大胆且简洁是欧拉研究的一大特色,仅从初等微积分便可略见一斑。
撰文 | 威廉·邓纳姆(William Dunham,美国穆伦堡学院数学教授)
翻译 | 李伯民、汪军、张怀勇
图片来源:rook76 / Shutterstock.com
无论按何种标准衡量历史上最杰出的数学家,莱昂哈德·欧拉都是其中的佼佼者。在永不枯竭的广泛兴趣的推动下,他使数学发生了彻底的变革,他一方面扩展了像数论、代数学和几何学这样一些早已确立的分支学科的研究范围,同时又创建了像图论、变分学和分拆论这样一些分支学科。数学界在1911年开始出版他的著作集《欧拉全集》,这本身就是一个巨大的挑战。到目前为止(编者注:本文出版于2005年),已经出版了70余卷,达25000多页,还尚未完成此项任务。这个耗费了将近一个世纪时间的庞大的出版项目,充分证明了欧拉与生俱来的过人数学天赋。
这种天赋在分析学中表现尤为突出。在已经出版的欧拉著作集中,就有厚厚的18卷近 9000 页是论述这门学科的。这些著作中包含了函数(1748)、微分学(1755)和积分学(1768)的里程碑式的教材,以及数十篇题材从微分方程到无穷级数以至椭圆积分的论文。因此,欧拉被描绘成“分析学的化身”。[1]
要在这短短一章的篇幅中公允地介绍这些贡献是不可能的。我们仅选择5个主题(编者注:本文仅节选前两个主题:微分和积分),以期能窥探欧拉的成就。首先从初等微积分的一个例子开始,介绍他大胆的——或许有人会说是不顾一切的方法,来说明他如此鲜明的工作特色。
无穷小量等于0
◆ ◆ ◆
欧拉在 1755 年写的《微分学原理》(Institutiones calculi differentialis)这本教科书中,给出了微分学的一些常见的公式。[2]这些公式建立在“无限小量”概念的基础上,他对这一概念的特征描述如下。
毫无疑问,任何量都可以减小直到完全消失,以至最后不复存在。但是一个无穷小量是一种不断减小的量,因此,它在事实上等于0……同其他普通的思想一样,在这种思想中其实并没有隐含什么高深莫测的奥秘,使得无穷小的演算变得如此疑难重重。[3]
对欧拉来说,微分dx就是零:既不多,也不少——一句话,什么也没有。因此,表达式x和x+dx是相等的,并且在必要时可以互换。他注意到“同有限量相比,无穷小量消失为零,因此可以忽略不计”。[4]此外,像(dx)2和(dx)3这样的无穷小量的乘方比dx还要小,所以同样可以随意丢弃。
欧拉通常需要寻求的是微分之比,并且确定这个比值,这相当于对0/0赋予一个值,这是微积分的使命。正如他所说,“微分学的强大之处在于它同研究任何两个无穷小量的比值相关”。[5]
我们以他对函数y=sin x的处理作为一个例证。欧拉从牛顿级数开始(其中我们使用现在的“阶乘”符号):
善用无穷级数
◆ ◆ ◆
欧拉是历史上最重要的求积专家之一,被积函数越是奇特,他做得越是得心应手。在他的著作中,特别在《欧拉全集》第17卷、第18卷和第19卷中,随处可见下面一类非同寻常的例子:[7]
从这个推导可以看出,欧拉同他的前辈们牛顿、莱布尼茨和伯努利兄弟一样,是对付无穷级数的(无畏的)高手。事实上,人们有理由说,在他的前辈数学家们的工作基础上,一种相当高的处理无穷级数的水平造就了这样一位早期的分析学家。
注释
[1] Eric Temple Bell, Men of Mathematics, Simon & Schuster, 1937, p. 139.
[2] Leonhard Euler, Foundations of Differential Calculus , trans. John Blanton,
Spriger-Verlag, 2000.
[3] 同[2], p. 51.
[4] 同[2], p. 52.
[5] 同[2], p. 52.
[6] 同[2], p. 116.
[7] 这些积分分别参见 Leonhard Euler, Opera omnia, ser. 1, vol. 17, p. 407, Opera Omnia, ser. 1, vol. 19, p. 227, Opera omnia, ser. 1, vol. 18, p. 8.
[8] Leonhard Euler, Opera omnia, ser. 1, vol. 18, p. 4.
本文经授权节选自《微积分的历程》(人民邮电出版社,2020年9月版)第4章“欧拉”,小标题和图片为编辑所加。
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信公众号内联系后台。