钛铁贮氢合金是一种性能优良、成本低廉的贮氢材料。该合金吸氢量大,含氢重量比为1.8%,吸放氢迅速,这些优点对其应用十分有利。不足之处是活化困难,须加热到250℃以上作反复的充氢——抽空操作,另外抗中毒能力差。这些缺点可以通过Mn、Co等合金化加以改善。钛铁合金已在氢的贮存净化、氢压机等领域获得应用。
简介钛铁贮氢合金是一种性能优良、成本低廉的贮氢材料。该合金吸氢量大,含氢重量比为1.8%,吸放氢迅速,这些优点对其应用十分有利。不足之处是活化困难,须加热到250℃以上作反复的充氢——抽空操作,另外抗中毒能力差。这些缺点可以通过Mn、Co等合金化加以改善。钛铁合金已在氢的贮存净化、氢压机等领域获得应用1。
应用原理储氢合金是一种能储存氢气的合金,它所储存的氢的密度大于液态氢,因而被称为氢海绵。而且氢储入合金中时不仅不需要消耗能量,反而能放出热量。储氢合金释放氢时所需的能量也不高,加上工作压力低,操作简便、安全,因此是最有前途的储氢介质。储氢合金的储氢原理是可逆地与氢形成金属氢化物,或者说是氢与合金形成了化合物,即气态氢分子被分解成氢原子而进入了金属之中。由于氢本身会使材料变质,如氢损伤、氢腐蚀、氢脆等。而且,储氢合金在反复吸收和释放氢的过程中,会不断发生膨胀和收缩,使合金发生破坏,因此,良好的储氢合金必须具有抵抗上述各种破坏作用的能力1。
研究现状正在研究和发展中的储氢合金通常是把吸热型的金属(例如铁、锆、铜、铬、钼等)与放热型的金属(例如钛、镧、铈、钽等)组合起来,制成适当的金属间化合物,使之起到储氢的功能。吸热型金属是指在一定的氢压下,随着温度的升高,氢的溶解度增加;反之为放热型金属。储氢合金主要有三大系列:
①以LaNi5为代表的稀土系储氢合金系列;
②以TiFe为代表的钛系储氢合金;
③以Mg2Ni 为代表的镁系储氢材料1。
优点钛铁系储氢合金具有的优势如下:
①易活化,氢的吸储量大;
②用于储氢时生成热尽量小,而用于蓄热时生成热尽量大;
③在一个很宽的组成范围内,应具有稳定合适的平衡分解;
④氢的俘获和释放速度快;
⑤金属氢化物的有效热导率大;
⑥在反复吸、放氢的循环过程中,合金的粉化小,性能稳定性好;
⑦对不纯物如氧、氮、CO、CO2、水分等的耐中毒能力强;
⑧钛铁系储氢合金价格较便宜2。
应用(1)作为储运氢气的容器:储氢合金作储氢容器具有重量轻,体积小的优点。用储氢合金储氢。无需高压及储存液氢的极低温设备和绝热措施,节省能量,安全可靠。
(2)氢能汽车:储氢合金作为车辆氢燃料的储存器,处于研究试验阶段。主要问题是储氢材料的重量比汽油箱重量大得多,影响汽车速度。但是氢的热效率高于汽油,而且燃烧后无污染,使氢能汽车的前景十分诱人。
(3)分离、回收氢:工业生产中,有大量含氢的废气排放到空中白白浪费了。如能对其加以分离、回收、利用,则可节约巨大的能源。利用储氢合金分离氢气的方法与传统方法不同,当含氢的混合气体(氢分压高于合金-氢系平衡压)流过装有储氢合金的分离床时,氢被储氢合金吸收,形成金属氢化物,杂质排出;加热金属氢化物,即可释放出氢气。
(4)制取高纯度氢气:利用含有杂质的氢气与储氢合金接触,氢被吸收,杂质则被吸附于合金表面;除去杂质后,再使氢化物释氢,则得到的是高纯度氢气。
(5)加氢及脱氢反应催化剂:施瓦布(E.Schwab)等发现在TiFe合金中加入少量Ru可使TiFe在合成氨反应中的催化活性提高5倍,活化能从62kJ/mol降至38kJ/mol。此后储氢合金在催化加氢、脱氢反应中的应用引起人们越来越大的兴趣,并得到广泛的研究3。
研究价值在研究的各种储氢材料中,钛铁系储氢合金是主要应用的储氢材料,但其储氢需要较高的温度和压力,且储氢量较低,大规模应用仍然有困难。钛铁系储氢合金结构的纳米化和高催化性能的多元系合金的开发应是今后研究方向。储氢合金进行催化参杂、控制储氢材料的显微结构的研究,对于提高材料的储氢性能以及开发新型复合储氢材料都具有理论和实际意义4。
本词条内容贡献者为:
邱学农 - 副教授 - 济南大学