格子气自动机或格子气细胞自动机是一种用来模拟液体流动的细胞自动机。
定义格子气自动机是LatticeBoltzmann方法的前身。通过格子气自动机,我们可能得出宏观的纳维-斯托克斯方程对于格子气自动机方法的兴趣在20世纪90年代早期趋于稳定,LatticeBoltzmann方法开始流行。1
细胞自动机细胞自动机(英语:Cellular automaton),又称格状自动机、元胞自动机,是一种离散模型,在可算性理论、数学及理论生物学都有相关研究。它是由无限个有规律、坚硬的方格组成,每格均处于一种有限状态。整个格网可以是任何有限维的。同时也是离散的。每格于t时的态由t-1时的一集有限格(这集叫那格的邻域)的态决定。每一格的“邻居”都是已被固定的。(一格可以是自己的邻居。)每次演进时,每格均遵从同一规矩一齐演进。
就形式而言,细胞自动机有三个特征:
平行计算(parallel computation):每一个细胞个体都同时同步的改变
局部的(local):细胞的状态变化只受周遭细胞的影响。
一致性的(homogeneous):所有细胞均受同样的规则所支配
细胞自动机最早由美籍数学家冯·诺依曼(John von Neumann)在1950年代为模拟生物细胞的自我复制而提出的。但是并未受到学术界重视。直到1970年,任教于剑桥大学的英国数学家约翰·何顿·康威(John Horton Conway)设计了生命游戏,经马丁·葛登在《科学美国人》杂志上介绍,才吸引了科学家们的注意。此后,英国学者史蒂芬·沃尔夫勒姆(Stephen Wolfram)对初等元胞机256种规则所产生的模型进行了深入研究,并用熵来描述其演化行为,将细胞自动机分为平稳型、周期型、混沌型和复杂型。1
纳维-斯托克斯方程纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。
纳维尔-斯托克斯方程可用于描述大量在学术研究和经济生活中的重要现象之物理过程,因此有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。
纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和压力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。
这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。
对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。
虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。2
本词条内容贡献者为:
曹慧慧 - 副教授 - 中国矿业大学