相变增韧是耐火材料增韧方法之一。由应力诱导相变造成一种耗能机制,从而产生显著的增韧效果。包括马氏体相变、铁弹性相变以及孪晶现象等。
陶瓷的相变传统的观念认为,相变在陶瓷体中引起的内应变终将导致材料的开裂。因此,陶瓷工艺学往往将相变看作不利的因素。然而,部分稳定化ZrO2( PSZ)具有比全稳定化ZrO2好得多的力学性能这一事实使人们得到了启发,PSZ的相变韧化得以受到重视。从而把相变作为陶瓷材料的强韧化手段,并已取得了显著效果。1
机理ZrO2在1150℃左右发生单斜←正方结构的马氏体相变,并伴有3%~5%的体积胀缩。当弥散在陶瓷基体中的ZrO2粒子发生相变时,伴随相转变的体积变化受到周围基体的限制,使相变受阻导致相变点温度降低。相变温度降低的程度与ZrO2粒子的尺寸有关,当ZrO2粒子的尺寸小于某一个临界值De时,马氏体相变点可以低于常温。高温的正方ZrO2相可以保持在室温。在室温下,当含有正方结构的ZrO2粒子的陶瓷中产生裂纹时,裂纹尖端附近由于应力集中而高于临界值时,裂纹尖端附近的正方ZrO2粒子会因应力诱发而进行马氏体相变。由于相变需消耗大量功,因此正方ZrO2向单斜的ZrO2马氏体转变使裂纹尖端应力松弛,从而阻碍裂纹的进一步扩展。此外,马氏体相变的体积膨胀使周围基体受压,促使其他裂纹闭合。显然,马氏体相变的存在使裂纹扩展从纯脆性变为具有一定塑性。此外,材料系统中相变一般伴随有微裂纹的产生,微裂纹也被作为消耗能量的机理类似于相变,故材料得到韧化。这就是所谓的应力诱发相变和相变韧化,或称相变诱发韧性。当裂纹经过后,裂纹两侧产生一个宽为W的相变区(如图12-9所示),显然相变区W愈宽则增韧效果愈好。ZrO2粒子的尺寸愈大则所需的相变诱发外力愈小,因而相变区W愈宽。1
应力诱导相变增韧在含有亚稳t- ZrO2的陶瓷中,当裂纹扩展进入含有t相晶粒的区域时,裂纹尖端周围的部分t相将在裂纹尖端应力场的作用下,发生t→m相变,形成一个相变过程区。在过程区内,一方面,由于裂纹扩展而产生新的裂纹表面,需要吸收一部分能量;另一方面,相变引起的体积膨胀效应也要消耗能量;同时相变的晶粒由于体积膨胀而对裂纹产生压应力,阻碍裂纹扩展。由此可见,应力诱导的这种组织转变消耗了外加应力,降低了裂纹尖端的应力强度因子,使得本可以继续扩展的裂纹因能量消耗造成驱动力减弱而终止扩展,从而提高了材料的断裂韧性。相变发生后,若要使裂纹继续扩展,必须提高外加应力水平。这样随应力水平的不断提高,裂纹会继续向前扩展。值得注意的是,在相变作用下,裂纹扩展的阻力会越来越大,扩展越来越困难。2
相变增韧陶瓷陶瓷材料由于具有耐高温、耐腐蚀、耐磨损等优良性能,作为工程材料正日益受到高度重视,但由于脆性问题(韧性、塑性低,强度不高,性能稳定性和可控性差)使其应用受到很大限制。因此,近年来人们在改善陶瓷材料的强韧性方面进行了大量研究并取得了一定成果。陶瓷材料强韧化方法主要有纤维法、晶须法、颗粒法、热处理法、表面改性法等。
材料的断裂过程要经历弹性变形、塑性变形、裂纹的形成与扩展,整个断裂过程要消耗一定的断裂能。因此,为了提高材料的强度和韧性,应尽可能地提高其断裂能。对金属来说,塑性功是其断裂能的主要组成部分,由于陶瓷材料主要以共价键和离子键键合,多为复杂的晶体结构,室温下的可动位错的密度几乎为零,塑性功往往仅有十几J/m2或更低,因此需要寻找其他的强韧化途径,相变第二相颗粒增韧补强即是途径之一。传统的观念认为,相变在陶瓷体中引起的内应变终将导致材料的开裂。因此,陶瓷工艺学往往将相变看作不利的因素。然而,部分稳定化ZrO2如(PSZ)具有比全稳定化ZrO2好得多的力学性能这一事实使人们得到了启发,PSZ的相变韧化得以受到重视,从而把相变作为陶瓷材料的强韧化手段,并已取得了显著效果。3
本词条内容贡献者为:
侯传涛 - 副教授 - 青岛大学