版权归原作者所有,如有侵权,请联系我们

[科普中国]-背景辐射理论

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

背景辐射,又称为宇宙微波背景。是宇宙学中“大爆炸”遗留下来的热辐射。在早期的文献中,“背景辐射”称为“宇宙微波背景辐射”(CMBR)或“遗留辐射”,是一种充满整个宇宙的电磁辐射。

简介宇宙背景辐射是来自宇宙空间背景上的各向同性的微波辐射,也称为微波背景辐射。二十世纪六十年代初,美国科学家彭齐亚斯和R.W.威尔逊为了改进卫星通讯,建立了高灵敏度的号角式接收天线系统。1964年,他们用它测量银晕气体射电强度。为了降低噪音,他们甚至清除了天线上的鸟粪,但依然有消除不掉的背景噪声。他们认为,这些来自宇宙的波长为7.35厘米的微波噪声相当于3.5K。1965年,他们又订正为3K,并将这一发现公诸于世,为此获1978年诺贝尔物理学奖。

特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间(背景)是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·威尔逊偶然发现宇宙微波背景,于1940年代开始研究,并于1978年获得诺贝尔奖。

“宇宙微波背景是我们宇宙中最古老的光,当宇宙刚刚380,000岁时刻在天空上。它显示出微小的温度涨落,对应着局部密度的细微差异,代表着所有未来的结构,是当今的恒星与星系的种子”。

宇宙微波背景很好地解释了宇宙早期发展所遗留下来的辐射,它的发现被认为是一个检测大爆炸宇宙模型的里程碑。宇宙在年轻时期,恒星和行星尚未形成之前,含有致密,高温,充满着白热化的氢气云雾等离子体。等离子体与辐射充满着整个宇宙,随着宇宙的膨胀而逐渐冷却。当宇宙冷却到某个温度时,质子和电子结合形成中性原子。这些原子不再吸收热辐射,因此宇宙逐渐明朗,不再是不透明的云雾。宇宙学家提出中性原子在“再复合”时期形成,紧接在“光子脱耦”之后,即光子开始自由穿越整个空间,而非在电子与质子所组成的等离子体中紧密的碰撞。光子在脱耦之后开始传播,但由于空间膨胀,导致波长随着时间的推移而增加(根据普朗克定律,波长与能量成反比),光线越来越微弱,能量也较低。这就是别称“遗留辐射”的来源。“最后散射面”是指我们由光子脱耦时的放射源接收到光子的来源点在空间中的集合。

因为任何建议的宇宙模型都必须解释这种辐射,因此宇宙微波背景是精确测量宇宙学的关键。宇宙微波背景在黑体辐射光谱的温度为2.72548±0.00057K。光谱辐射dEν/dν的峰值为60.2GHz,在微波频率的范围内。(若光谱辐射的定义为dEλ/dλ,则峰值波长为1.063毫米。)

该光辉在所有方向中几乎一致,但细微的残留变化展现出各向异性,与预期的一样,分布相当均匀的炽热气体已经扩大到目前的宇宙大小。特别的是,在天空中不同角度的光谱辐射包含相同的各向异性,或不规则性,随区域大小变化。它们已被详细测量,若有因物质在极小空间的量子摄动而起的微小温度变化,且膨胀到今日可观测的宇宙大小,应该会与之吻合。这是一个非常活跃的研究领域,科学家同时寻求更好的数据(例如,普郎克卫星)和更好的宇宙膨胀初始条件。虽然许多不同的过程都可产生黑体辐射的一般形式,但没有比大爆炸模型更能解释涨落。因此,大多数宇宙学家认为,宇宙大爆炸模型最能解释宇宙微波背景。1

在整个可视宇宙中有高度的一致性,黯淡却已测得的各向异性非常广泛的支持大爆炸模型,尤其是CDM模型。此外,威尔金森微波各向异性探测器及宇宙泛星系偏振背景成像实验观测相距大于再复合时期之宇宙视界角尺度上涨落间的相关性。此相关可能为非因果的微调,或因宇宙暴胀产生。2

特征微波背景辐射的最重要特征是具有黑体辐射谱,在0.3厘米-75厘米波段,可以在地面上直接测到;在大于100厘米的射电波段,银河系本身的超高频辐射掩盖了来自河外空间的辐射,因而不能直接测到;在小于0.3厘米波段,由于地球大气辐射的干扰,要依靠气球、火箭或卫星等空间探测手段才能测到。从0.054厘米直到数十厘米波段内的测量表明,背景辐射是温度近于2.7K的黑体辐射,习惯称为3K背景辐射。黑体谱现象表明,微波背景辐射是极大的时空范围内的事件。因为只有通过辐射与物质之间的相互作用,才能形成黑体谱。由于现今宇宙空间的物质密度极低,辐射与物质的相互作用极小,所以,我们今天观测到的黑体谱必定起源于很久以前。微波背景辐射应具有比遥远星系和射电源所能提供的更为古老的信息。微波背景辐射的另一特征是具有极高度的各向同性。这有两方面的含义:首先是小尺度上的各向同性。在小到几十弧分的范围内,辐射强度的起伏小于0.2-0.3%;其次是大尺度上的各向同性。沿天球各个不同方向,辐射强度的涨落小于0.3%。各向同性说明,在各个不同方向上,在各个相距非常遥远的天区之间,应当存在过相互的联系。

宇宙充满了温度刚刚超过开氏2.7度、能用地面射电望远镜和人造卫星上的仪器探测到的辐射之海。这被解释为宇宙由之诞生的大爆炸火球的直接证据。因而背景辐射的发现,是自埃德温·哈勃发现宇宙膨胀以来宇宙学方面最重要的观测成就;然而这一发现可真是来之不易。3

从背景辐射中,利用多普勒效应减去一个偶极,其中后者乃源于地球相对于共动宇宙静止参照系有相对运动,星球以相当371 km/s的速度朝向狮子座移动。减去偶极后,宇宙微波背景是均匀的辐射,黑体辐射的热能来自整个天空。辐射是各向同性的,差异约略为1/100000:方均根变异只有18μK,宇宙微波背景偶极以及在更高阶的多极矩上的相差已经得到测量,其结果同银河系运动的影响相一致。

在大爆炸模型下形成的宇宙,暴胀宇宙预测,约10秒之后的新生宇宙会以指数成长,抚平了几乎所有的不均匀性。其余的不均匀性由量子摄动在暴胀场中引发宇宙暴胀事件。在10秒之后,早期宇宙由充满着高温、以电子、质子、重子与光子相互作用的等离子体所组成。当宇宙膨胀,绝热冷却导致等离子体的能量密度降低,直到环境变得有利于电子与质子结合,形成氢原子。复合发生时,温度约为3000 K,当时的宇宙约37.9万岁。在这一点上,光子不再与已是电中性的原子相互作用,并开始自由的在空间中旅行,导致物质与辐射退耦合。4

本词条内容贡献者为:

任毅如 - 副教授 - 湖南大学

评论
科普5d5135acc689c
太师级
背景辐射,又称为宇宙微波背景,是宇宙学中“大爆炸”遗留下来的热辐射。
2023-04-08