介质中的介电系数与真空介电系数之比称为相对介电系数。大多数情况下,采用相对介电常数来表示,也称之为介电常数。介电系数法是指用于测量介质的介电系数的方法。主要有集中电路法、传输线法、谐振法、自由空间波法等等。其中,传输线法、集中电路法、谐振法等属于实验室测量方法,测量通常是在实验室中进行,要求具有相应的样品采集技术。另外对于已知介电常数材料发泡后的介电常数通常用经验公式得到。
简介材料的介电性能通常用材料的介电系数表示,即材料在恒定电场作用下的介电性能。介电常数是相对介电常数与真空中绝对介电常数乘积1。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降。理想导体的相对介电常数为无穷大。介电系数法是指用于检测材料介电系数的方法或将介电系数用于其他应用的技术。测量介电常数的方法主要有传输线法、集中电路法、谐振法、自由空间波法等等。
应用材料的介电性能通常用材料的介电系数,即在恒定电场作用下的介电性能,介电常数是物体的重要物理性质,对介电常数的研究有重要的理论和应用意义。电气工程中的电介质问题、电磁兼容问题、生物医学、微波、电子技术、食品加工和地质勘探中,无一不利用到物质的电磁特性,对介电常数的测量提出了要求。在食品加工行业当中,储藏、加工、灭菌、分级及质检等方面都广泛采用了介电常数的测量技术。例如,通过测量介电常数的大小,新鲜果蔬品质、含水率、发酵和干燥过程中的一些指标都得到间接体现,此外,根据食品的介电常数、含水率确定杀菌时间和功率密度等工艺参数也是重要的应用之一。在路基压实质量检测和评价中,如果利用常规的方法,尽管测量结果比较准确,但工作量大、周期长、速度慢且对路面造成破坏。由于土体的含水量、温度及密度都会对其介电特性产生不同程度的影响,因此,可以采用雷达对整个区域进行测试以反算出介电常数的数值,通过分析介电性得到路基的密度及压实度等参数,达到快速测量路基的密度及压实度的目的。此外,复介电常数测量技术还在水土污染的监测中得到了应用。并且还可通过对岩石介电常数的测量对地震进行预报。
介电常数的测量按材质分类可以分为对固体、液体、气体以及粉末(颗粒)的测量。固体电介质在测量时应用最为广泛,通常可以分为对固定形状大小的固体和对形状不确定的固体的测量。相对于固体,液体和气体的测试方法较少。对于液体,可以采用波导反射法测量其介电常数,误差在 5%左右。此外国家标准中给出了在 90℃、工频条件下测量液体损耗角正切及介电常数的方法。对于气体,具体测试方法少且精度都不十分高。有关文献中给出一种测量方法,以测量共振频率为基础,在 LC 串联谐振电路中产生震荡,利用数字频率计测量谐振频率,不断改变压强和记录,当前压强下谐振频率,最后用作图或者一元线性回归法处理数据,得到电容变化率进而计算出相对介电常数。
方法集中电路法是一种在低频段将有耗材料填充电容,利用电容各参数以及测量得到的导纳推出介电常数的一种方法。为了测量导纳,通常用并联谐振回路测出 Q 值(品质因数)和频率,进而推出介电常数。由于其最高频率会受到最小电感的限制,这种方法的最高频率一般是
100 MHz。最小电感一般为 10 nHz 左右。如果电感过小,高频段杂散电容影响太大。如果频率过高,则会形成驻波,改变谐振频率同时辐射损耗骤然增加。但这种方法并不适用于低损材料。因为这种方法能测得的 Q 值只有 200 左右,使用网络分析仪测得 tan也只在 左右。这种方法不但准确度不高,而且只能测量较低。
传输线法是网络法的一种,是将介质置入测试系统适当位置作为单端口或双端口网络。双端口情况下,通过测量网络的 s 参数来得到微波的电磁参数。早在 2002 年用传输反射法就能够实现对任意厚度的样品在任意频率上进行复介电常数的稳定测量。
NRW T/R 法(即基于传输/反射参数的传输线法)的优势是简单、精度高并且适用于波导和同轴系统。但该方法在样品厚度是测量频率对应的半个波导波长的整数倍时并不稳定。同时此方法存在着多值问题,通常选择不同频率或不同厚度的样品进行测量较浪费时间并且不方便。此外就是对于极薄的材料不能进行高精度测量。反射法测量介电常数的最早应用是Decreton 和 Gardial 在 1974 年通过测量开口波导系统的反射系数推导出待测样品的介电常数。同轴反射法是反射法的推广和深化,即把待测样品等效为两端口网络,通过网络分析仪测量该网络的散射系数,据此测试出材料的介电常数。结果显示,同轴反射法在测量高损耗材料介电常数上有一定可行性,可以测量和计算大多数高损耗电介质的介电常数,对谐振腔法不能测量高损耗材料介电常数的情况有非常大的补充应用价值。2006 年又提出了一种测量低损耗薄膜材料介电常数的标量法。该方法运用了传输线法测量原理,首先测量待测介质损耗,间接得出反射系数,然后由反射系数与介电常数的关系式推出介质的介电常数。其薄膜可以分为低损耗、高损耗和高反射三类,通过实验证明了三种薄膜的损耗随频率改变基本呈相同的变化趋势,高频稍有差别,允许误差范围内可近似。该方法切实可行,但不适用于测量表面粗糙的介质。有人提出了新的确定 Ka 波段毫米波损耗材料复介电常数的磁导率的测量方法并给出了确定样品的复介电常数及磁导率的散射方程。此方法有下列优点:1) 计算复介电常数及磁导率方程组是去耦合的,不需要迭代;2) 被测量的频率范围比较宽;3) 与传统方法相比消除了介电常数测量对样品长度和参考面的位置的依赖性;4) 消除了 NRW 方法在某些频点测量的不确定性。还有人将椭圆偏振法的电磁频谱从可见光、红外光扩展到毫米波段。椭圆偏振法用测量样品反射波或者投射波相对于入射波偏振状态的改变来计算光电特性和几何参数。毫米波椭圆偏振法得到的复介电常数的虚部比实部低,即计算得到的虚部有一定误差,但它对椭圆偏振法的进一步研究提供了重要的参考依据。
自由空间法其实也可算是传输线法。它的原理可参考由空间法与传输线法有所不同。传输线法要求波导。其测量系统样品时,忽略波导损耗,短路段反射系线路传输法,通过测得传输和反射系数,改变样品数据和频率来得到介电常数的数值。自由空间法保存了线路传输法可以测量宽频带范围的优点。自由空间法要求材料要有足够的损耗,否则会在材料中形成驻波并且引起误差。因此,这种方法只适用于高于 3 GHz 的高频情况。其最高频率可以达到 100 GHz。
本词条内容贡献者为:
任毅如 - 副教授 - 湖南大学