若对定义域每一个自变量x,其对应的函数值f(x)是唯一的,则称f(x)是单值函数。
简介若对定义域每一个自变量x,其对应的函数值f(x)是唯一的,则称f(x)是单值函数。
中学数学凡涉及的函数,都是单值函数。大学非数学专业的公共课程——数学,一般说函数,都是指这种单值函数。有特别注明的除外。大学数学专业另当别论。
类型指数函数指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
三角函数三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
双曲函数在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数sinh和双曲余弦函数cosh,从它们可以导出双曲正切函数tanh等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。
双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。1
多值函数设X是一个非空数集,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中至少存在一个元素y与之对应 , 就称对应法则f是X上的一个多值函数,记作y=f(x)。
这两个定义的区别可抓关键词的变化,“唯一的”变为“至少一个”。单值函数是多值函数的特例。
本词条内容贡献者为:
胡建平 - 副教授 - 西北工业大学