版权归原作者所有,如有侵权,请联系我们

[科普中国]-等周定理

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。这两种说法是等价的。

简介等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。这两种说法是等价的。

虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等。

在物理中,等周问题和跟所谓的最小作用量原理有关。一个直观的表现就是水珠的形状。在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体。这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值。根据等周定理,最小值是在水珠形状为球状时达到。1

历史平面上的等周问题是等周问题最经典的形式,它的出现可以追溯到很早以前。这个问题可以被表述为:在平面上所有周长一定的封闭曲线中,是否有一个围成的面积最大?如果有的话,是什么形状?另一种等价的表述是:当平面上的封闭曲线围成的面积一定时,怎样的曲线周长最小?

虽然圆看似是问题的表面答案,但证明此事实其实不易。首个接近答案的步骤出现在1838年——雅各·史坦纳以几何方法证明若答案存在,答案必然是圆形。不久之后他的证明被其他数学家完善。

其方法包括证明了不完全凸的封闭曲线的话,能以“翻折”凹的部分以成为凸的图形,以增加面积;不完全对称的封闭曲线能以倾斜来取得更多的面积。圆,是完全凸和对称的形状。可是这些并不足以作为等周定理的严格证明。

1901年,赫尔维茨凭傅里叶级数和格林定理给出一个纯解析的证明。1

最小作用量原理物理学中最小作用量原理(英语:least action principle),或更精确地,平稳作用量原理(英语:stationary action principle),是一种变分原理,当应用于一个机械系统的作用量时,可以得到此机械系统的运动方程。这原理的研究引导出经典力学的拉格朗日表述和哈密顿表述的发展。卡尔·雅可比特称最小作用量原理为分析力学之母。

在现代物理学里,这原理非常重要,在相对论、量子力学、量子场论里,都有广泛的用途。在现代数学里,这原理是莫尔斯理论的研究焦点。本篇文章主要是在阐述最小作用量原理的历史发展。关于数学描述、推导和实用方法,请参阅条目作用量。最小作用量原理有很多种例子,主要的例子是莫佩尔蒂原理(Maupertuis' principle)和哈密顿原理。

在最小作用量原理之前,有很多类似的点子出现于测量学和光学。古埃及的拉绳测量者(rope stretcher)在测量两点之间的距离时,会将固定于这两点的绳索拉紧,这样,可以使间隔距离减少至最低值。托勒密在他的著作《地理学指南》(Geographia)第一册第二章里强调,测量者必须对于直线路线的误差做出适当的修正。古希腊数学家欧几里得在《反射光学》(Catoptrica)里表明,将光线照射于镜子,则光线的反射路径的入射角等于反射角。稍后,亚历山大的希罗证明这路径的长度是最短的。1

本词条内容贡献者为:

胡建平 - 副教授 - 西北工业大学