钒固氮酶,是一种在固氮细菌身上发现的酵素,它是第二种固氮方法,当主要的金属钼固氮酵素无法运作时。 在自然的氮循环中,钒固氮酶是非常重要的构成要素,它将空气中的氮气转换成氨,使原本无法被植物利用的氮气变成有用的。最近美国的学者发现,当一氧化物存在时就会减少钒固氮酶,并产生乙烯、乙烷、丙烷。
简介钒固氮酶,是一种在固氮细菌身上发现的酵素,它是第二种固氮方法,当主要的金属钼固氮酵素无法运作时。在自然的氮循环中,钒固氮酶是非常重要的构成要素,它将空气中的氮气转换成氨,使原本无法被植物利用的氮气变成有用的。最近美国的学者发现,当一氧化物存在时就会减少钒固氮酶,并产生乙烯、乙烷、丙烷。1
生物上的功能钒固氮酶在一些菌属中被发现,例如:Azotobacter和R. palustris及A. variabilis等品种的细菌.钒固氮酶的最重要功能是和常见的钼固氮酵素相配合,且作为替代的固氮方法,当钼的固氮酵素无法作用时。
钒固氮酶有 α2β2Ύ2的单位蛋白结构,而钼的固氮酵素则是α2β2的结构。 虽然在结构的基因经过转译后,只有15%与钼的固氮酵素相同,但两者却有着相同的氧化还原中心。在室温下,钒固氮酶较钼的固氮酵素不活泼, 这是因为它转换更多的H成 H2.然而,在低温下,钒固氮酶被发现是比钼的固氮酵素还活泼,而且它甚至可以在5℃下的低温下固氮,它在低温下的固氮能力是钼铁酵素的十倍高。不像钼的固氮酵素,少量的联氨、异腈、和乙炔能在接触反应中被转换成乙烯、乙烷、和丙烷。 钒固氮酶痕容易被氧化,所以它只能在无氧的环境下作用并且它有着相当复杂的机制来预防接触到氧气。1
固氮作用固氮作用(英语:Nitrogen fixation),简称固氮,指将空气中游离态的氮(氮气)转化为含氮化合物(如硝酸盐、氨、二氧化氮)的过程。可分为自然固氮以及人工固氮两种。
自然固氮(Natural nitrogen fixation)是在自然状态下(非人工),将大气中游离态的氮(氮气)转化为含氮化合物(如硝酸盐、氨、二氧化氮)的过程。自然固氮的途径主要有两种:
气电固氮:在大气中游离态的氮通过闪电等产生含氮化合物的高能固氮,约占自然固氮的10%。
生物固氮:即自然界中的一些微生物种群(如豆科植物的根瘤菌)通过体内的固氮酶将空气中的氮气通过生物化学过程转化为含氮化合物,约占自然固氮的90%。
生物固氮更多信息:固氮生物
微生物自生或与植物共生,通过体内固氮酶的作用,将大气中的氮还原成氨的过程。自生固氮的细菌有固氮菌、巴氏梭菌、克氏杆菌、光合细菌等。与豆科植物共生固氮的有根瘤菌。非豆科植物共生固氮的有放线菌。蓝绿藻如念珠藻、项圈藻等能自身固氮,也能与其他植物如满地红共生固氮。此外茜草科、紫金牛科和薯蓣科中某些植物叶片上有固氮微生物共生的叶瘤。
固氮机制固氮对于植物和土壤的氮肥供应有重要作用。其机制即菌体通过固氮酶将大气中游离态的氮(氮气)转化为含氮化合物、注入到土壤中,从而提高土壤的肥力,谓之生物固氮。或大气中游离态的氮通过闪电等产生含氮化合物的高能固氮,谓之气电固氮。1
本词条内容贡献者为:
黎明 - 副教授 - 西南大学