在计算机视觉和图像处理中,大津二值化法用来自动对基于聚类的图像进行二值化, 或者说,将一个灰度图像退化为二值图像。该算法以大津展之命名。算法假定该图像根据双模直方图(前景像素和背景像素)把包含两类像素,于是它要计算能将两类分开的最佳阈值,使得它们的类内方差最小;由于两两平方距离恒定,所以即它们的类间方差最大。 因此,大津二值化法粗略的来说就是一维Fisher判别分析的离散化模拟。
原始方法的多级阈值扩展称为多大津算法。
简介在计算机视觉和图像处理中,大津二值化法用来自动对基于聚类的图像进行二值化,或者说,将一个灰度图像退化为二值图像。该算法以大津展之命名。算法假定该图像根据双模直方图(前景像素和背景像素)把包含两类像素,于是它要计算能将两类分开的最佳阈值,使得它们的类内方差最小;由于两两平方距离恒定,所以即它们的类间方差最大。因此,大津二值化法粗略的来说就是一维Fisher判别分析的离散化模拟。
原始方法的多级阈值扩展称为多大津算法。1
二值化二值化(英语:Thresholding)是图像分割的一种最简单的方法。二值化可以把灰度图像转换成二值图像。把大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化。
根据阈值选取的不同,二值化的算法分为固定阈值和自适应阈值。 比较常用的二值化方法则有:双峰法、P参数法、迭代法和OTSU法等。1
计算机视觉计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。
作为一门科学学科,计算机视觉研究相关的理论和技术,试图创建能够从图像或者多维数据中获取“信息”的人工智能系统。这里所指的信息指香农定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。
作为一个工程学科,计算机视觉寻求基于相关理论与模型来创建计算机视觉系统。这类系统的组成部分包括:
过程控制(例如工业机器人和无人驾驶汽车)
事件监测(例如图像监测)
信息组织(例如图像数据库和图像序列的索引创建)
物体与环境建模(例如工业检查,医学图像分析和拓扑建模)
交感互动(例如人机互动的输入设备)
计算机视觉同样可以被看作是生物视觉的一个补充。在生物视觉领域中,人类和各种动物的视觉都得到了研究,从而创建了这些视觉系统感知信息过程中所使用的物理模型。另一方面,在计算机视觉中,靠软件和硬件实现的人工智能系统得到了研究与描述。生物视觉与计算机视觉进行的学科间交流为彼此都带来了巨大价值。
计算机视觉包含如下一些分支:画面重建,事件监测,目标跟踪,目标识别,机器学习,索引创建,图像恢复等。1
线性判别分析线性判别分析(LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的组合可用来作为一个线性分类器,或者,更常见的是,为后续的分类做降维处理。
LDA与方差分析(ANOVA)和回归分析紧密相关,这两种分析方法也试图通过一些特征或测量值的线性组合来表示一个因变量。然而,方差分析使用类别自变量和连续数因变量,而判别分析连续自变量和类别因变量(即类标签)。逻辑回归和概率回归比方差分析更类似于LDA,因为他们也是用连续自变量来解释类别因变量的。LDA的基本假设是自变量是正态分布的,当这一假设无法满足时,在实际应用中更倾向于用上述的其他方法。
LDA也与主成分分析(PCA)和因子分析紧密相关,它们都在寻找最佳解释数据的变量线性组合。LDA明确的尝试为数据类之间不同建立模型。 另一方面,PCA不考虑类的任何不同,因子分析是根据不同点而不是相同点来建立特征组合。判别的分析不同因子分析还在于,它不是一个相互依存技术:即必须区分出自变量和因变量(也称为准则变量)的不同。
在对自变量每一次观察测量值都是连续量的时候,LDA能有效的起作用。当处理类别自变量时,与LDA相对应的技术称为判别反应分析。2
本词条内容贡献者为:
尹维龙 - 副教授 - 哈尔滨工业大学