行星齿轮变速器是用行星齿轮机构实现变速的变速器。它通常装在液力变扭器的后面,共同组成液力自动变速器。 行星齿轮机构因类似于太阳系而得名。它的中央是太阳轮,太阳轮的周围有几个围绕它旋转的行星轮,行星轮之间,有一个共用的行星架。行星轮的外面,有一个大齿圈。
简介行星齿轮变速器,属于一种齿轮箱,它是由行星齿圈、太阳轮、行星轮(又称卫星轮)和齿轮轮轴组成,根据齿圈、太阳轮和行星轮的运动关系,可以实现输入轴与输出轴脱离刚性传动关系、输入轴与输出轴同向或反向传动和输入与输出轴传动比变化,并在陆用、航海、航空等交通运输工具中得到广泛应用。
这样,行星齿轮机构就具有三个彼此可以相对旋转的运动件:太阳轮、行星架和齿圈。它可以实现四种不同组合的挡位:
①低挡太阳轮主动,行星架被动,齿圈不动。
②中挡太阳轮不动,行星架被动,齿圈主动。
③高挡(超速挡)太阳轮不动,行星架主动,齿圈被动。
④倒挡太阳轮主动,行星架不动,齿圈被动。
所有运动件都不受约束时,变速器处于空挡。
行星齿轮变速器通常由两组到三组行星齿轮机构组成,并用多片离合器控制上述运动件的组合,实现不同的挡位。
行星齿轮式自动变速箱 在自动变速箱上使用的行星齿轮机构,应用较多的有辛普森( Simpson gearset )齿轮机构和拉维奈尔赫( Ravigneaux gearset )齿轮机构,此外,还有各公司自主开发的独特组合齿轮机构。这些行星齿轮机构大致上可以分为六类:
(一)基础行星齿轮机构
基础行星齿轮机构是轿车用自动变速中最简单的一种,此种行星齿轮机构源于美国克莱斯勒公司的 Power Flite 液压自动变速箱。
(二)辛普森 (Simpson) 齿轮机构
辛普森齿轮机构,是美国褔特汽车公司的一位工程师 Howard Simpson ,在他毕生从事汽车设计研究工作期间,由于设计发明了一种性能优越的特殊行星变速机构而闻名于世,该行星变速机构的主要构件有太阳轮、行星轮和环齿轮。将两行星排巧妙连接,则档位数变得更多(可以三进一退),而且具有结构简单紧密、传动效率高、工艺性好、制造费用低、换档平稳、操纵性能好等一系列优点;它适用于各种自动变速箱和动力换档变速箱,当时汽车界即将其定名为“辛普森齿轮机构"。
辛普森齿轮机构的问世,立即被美国褔特、通用、克莱斯勒等三家最大的汽车公司所采用,从 70 年代初期开始,即一直大量生产。
(三)改良型辛普森行星齿轮机构
此类主要是将辛普森行星齿轮机构中之带式制动器用片式制动器代替,并增加一个单向超速离合器 ( 自由轮机构 )F1 ,使得从二档换到三档时,换档平稳性得以改善。
(四)拉维奈尔赫( Ravigneaux )行星齿轮机构
拉维奈尔赫行星齿轮机构,与辛普森齿轮机构齐名, 70 年代初期美国褔特汽车公司生产的 Select-Shift 自动变速箱一直采用该齿轮机构,直到 1980 年才被带超速档的四前进档自动变速箱 Auto-overdrive 所取代。
(五)改良型拉维奈尔赫行星齿轮机构
此类主要是将拉维奈尔赫行星齿轮机构基础上增加换档自由轮机构 F1 ,使得从低档换到二档时,换档平稳性得以改善。
(六)四前进档行星齿轮机构
此类除了增加前进档位外,有些还具有功率分流、高速档锁止、增设超速档等特点。
不同车型自动变速箱在结构上往往有很大的差异,主要区别是在:
(1) 前进档的档数不同 ;
(2) 离合器、制动器及单向超速离合器的数目和布置方式不同 ;
(3) 所采用的行星齿轮机构类型不同。
早期轿车自动变速箱常采用 2个前进档或 3个前进档,新型轿车自动变速箱大部分采用 4个前进档;前进档的数目越多,行星齿轮变速箱中的离合器、制动器及单向超速离合器的数目就越多;离合器、制动器、单向超速离合器的布置方式主要取决于行星齿轮变速箱前进档的档数及所采用的行星齿轮机构的类型,对于行星齿轮机构类型相同的行星齿轮变速箱来说,其离合器、制动器及单向超速离合器的布置方式及工作过程基本上是相同的,因此,了解各种不同类型行星齿轮机构所组成的行星齿轮变速箱的结构和工作原理,是掌握各种不同车型自动变速箱结构和工作原理的关键,自动变速箱所采用的行星齿轮机构的类型主要有两类,即辛普森式行星齿轮机构和拉维奈尔赫式行星齿轮机构1。
功能(1)改变传动比,满足不同行驶条件对牵引力的需要,使发动机尽量工作在有利的工况下,满足可能的行驶速度要求。 在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。由于汽车行驶条件不同,要求汽车行驶速度和驱动扭矩能在很大范围内变化。例如,在高速路上车速应能达到100km/h,而在市区内,车速常在50km/h左右。空车在平直的公路上行驶时,行驶阻力很小,则
当满载上坡时,行驶阻力便很大。而汽车发动机的特性是转速变化范围较小,而转矩变化范围更不能满足实际路况需要。
(2)实现倒车行驶,用来满足汽车倒退行驶的需要。实现倒车行驶汽车,发动机曲轴一般都是只能向一个方向转动的,而汽车有时需要能倒退行驶,因此,往往利用变速箱中设置的倒档来实现汽车倒车行驶。
(3)中断动力传递,在发动机起动,怠速运转,汽车换档或需要停车进行动力输出时,中断向驱动轮的动力传递。
(4)实现空档,当离合器接合时,变速箱可以不输出动力。例如,可以保证驾驶员在发动机不熄火时松开离合器踏板离开驾驶员座位2。
原理机械式变速箱主要应用了齿轮传动的降速原理。简单的说,变速箱内有多组传动比不同的齿轮副,而汽车行驶时的换档行为,也就是通过操纵机构使变速箱内不同的齿轮副工作。如在低速时,让传动比大的齿轮副工作,而在高速时,让传动比小的齿轮副工作3。
分类1、按传动比的变化方式划分,变速器可分为有级式、无级式和综合式三种。
(a)有级式变速器:有几个可选择的固定传动比,采用齿轮传动。又可分为:齿轮轴线固定的普通齿轮变速器和部分齿轮(行星齿轮)轴线旋转的行星齿轮变速器两种。
(b)无级式变速器:传动比可在一定范围内连续变化,常见的有液力式,机械式和电力式等。
(c)综合式变速器:由有级式变速器和无级式变速器共同组成的,其传动比可以在最大值与最小值之间几个分段的范围内作无级变化。
2、按操纵方式划分,变速器可以分为强制操纵式,自动操纵式和半自动操纵式三种。
(a)强制操纵式变速器:靠驾驶员直接操纵变速杆换档。
(b)自动操纵式变速器:传动比的选择和换档是自动进行的。驾驶员只需操纵加速踏板,变速器就可以根据发动机的负荷信号和车速信号来控制执行元件,实现档位的变换。
(c)半自动操纵式变速器:可分为两类,一类是部分档位自动换档,部分档位手动(强制) 换档;另一类是预先用按钮选定档位,在采下离合器踏板或松开加速踏板时,由执行机构自行换档3。
检修变速器齿轮变速器齿轮经常处在不断变化的转速,负荷下进行工作,齿轮齿面又受到冲
击载荷的冲击,致使齿轮(特别是齿面)产生损伤.常见损伤有:
(1)齿轮磨损 变速器齿轮在正常工作条件下,齿面呈现出均匀的磨损,要求沿齿长方向磨损不应超过原齿长的百分之30;齿厚不应超过0.40;齿轮啮合面积不低于齿面的3分之2;运转齿轮啮合间隙一般应为0.15-0.26mm,使用限度为0.80mm;接合齿轮啮合间隙应为0.10-0.15mm,使用限度为0.60mm.可用百分表或软金属倾轧法测量.如果超过间隙,应成对更换。
(2)齿轮轮齿破碎 轮齿破碎,主要是由于齿轮啮合间隙不符合要求,轮齿啮合部位不当或工作中受到较大的冲击载荷所致。若轮齿边缘有不大于2mm的微小破碎,可用油石修磨后继续使用;若超过这个范围或有3处以上微小破碎,则应成对更换。
(3)常啮合齿轮端面磨损 常啮合的斜齿端面应有.10-0.30mm的轴向间隙,以保证齿轮良好运转,若齿端磨损起槽,可磨削修复,但磨削量应不超过.50mm。
(4)常啮合齿轮轴颈,滚针轴承及座孔磨损 成啮合齿轮座孔与滚针轴承及轴颈三者配合间隙应为0.01-0.08mm,否则应予更换。
变速器壳体变速器壳体是变速器总成的基础件,用以保证变速器中各零件的正确位置,工作中承受一定的载荷.常见损伤有:
(1)轴承座孔的磨损 壳体的轴承座孔磨损会破坏其与轴承的装配关系,直接影响变速器输入,输出轴的相对位置.轴承与座孔的配合间隙应为0-0.03mm,最大使用极限为0.10mm.否则应更换壳体或承孔镶套修复。
(2)壳体螺纹孔的修复 注油罗塞孔,放油螺塞孔的螺纹损伤以及壳体之间连接螺栓螺纹孔的损伤,可采取镶螺塞修复。
变速器轴变速器在工作过程中,各轴承受着变化的扭转力矩,弯曲力矩作用,健齿部分还承受着挤压,冲击和滑动摩擦等载荷.各轴的常见损伤有:
(1)轴颈磨损 轴颈磨损过大,不但会使齿轮轴线偏移,而且会带来齿轮啮合间隙的改变,造成传动时发出噪声.同时也使轴颈与轴承配合关系受到破坏,运转可能引起烧蚀.因此要求滚子轴承所在过盈配合处轴颈磨损不大于0.02mm滚针轴承配合处轴颈磨损不大于0.07mm,否则景更换或镀铬修复。
(2)健齿磨损健齿磨损在受力一侧较为严重.可与花键套配合检查,当键齿磨损超过0.25或与原键槽配合见习超过0.40mm时,齿轮的接合齿圈,结合套与健齿周配合见习大于0.30mm时,半圆键与轴颈键槽见习超过0.08mm时对健齿周或有键槽的轴应修复或更换。
(3)变速器轴弯曲检修 用顶针顶住变速器轴两端的顶针孔,利用百分表检查轴的径向跳动,其偏差应小于0.10mm.超过应进行压力校正修复。
同步器a.锁环式惯性同步器的检修:锁环的锥面角a约为6度-7度,在使用中,锥角变形中增大而不能迅速同步,则应及时更换。
b.锁销式惯性同步器:锁销式同步器主要损伤为锥环,锥盘磨损,当锥环斜面上0.40mm深的螺纹槽磨损至010mm深时,应更换。若锥环端面有擦痕,则需要端面车削,但累计车削两不得大于1mm,否则应更换3。
本词条内容贡献者为:
石季英 - 副教授 - 天津大学