版权归原作者所有,如有侵权,请联系我们

[科普中国]-数学形态学

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。

简介**数学形态学(Mathematical morphology)**是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。1

格 (数学)在数学中,是其非空有限子集都有一个上确界(叫)和一个下确界(叫)的偏序集合(poset)。格也可以特征化为满足特定公理恒等式的代数结构。因为两个定义是等价的,格理论从序理论和泛代数二者提取内容。半格包括了格,依次包括海廷代数和布尔代数。这些"格样式"的结构都允许序理论和抽象代数的描述。1

拓扑学在数学里,拓扑学(英语:topology),或意译为位相几何学,是一门研究拓扑空间的学科,主要研究空间内,在连续变化(如拉伸或弯曲,但不包括撕开或黏合)下维持不变的性质。在拓扑学里,重要的拓扑性质包括连通性与紧致性。

拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼兹,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。“拓扑学”一词由利斯廷于19世纪提出,虽然直到20世纪初,拓扑空间的概念才开始发展起来。到了20世纪中叶,拓扑学已成为数学的一大分支。

拓扑学有许多子领域:

一般拓扑学建立拓扑的基础,并研究拓扑空间的性质,以及与拓扑空间相关的概念。一般拓扑学亦被称为点集拓扑学,被用于其他数学领域(如紧致性与连通性等主题)之中。

代数拓扑学运用同调与同伦群等代数结构量测连通性的程度。

微分拓扑学研究在微分流形上的可微函数,与微分几何密切相关,并一齐组成微分流形的几何理论。

几何拓扑学主要研究流形与其对其他流形的嵌入。几何拓扑学中一个特别活跃的领域为“低维拓扑学”,研究四维以下的流形。几何拓扑学亦包括“纽结理论”,研究数学上的纽结。1

组成数学形态学是由一组形态学的代数运算子组成的,它的基本运算有4个: 膨胀(或扩张)、腐蚀(或侵蚀)、开启和闭合,它们在二值图像和灰度图像中各有特点。基于这些基本运算还可推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征抽取、边缘检测、 图像滤波、图像增强和恢复等。数学形态学方法利用一个称作结构元素的“探针”收集图像的信息,当探针在图像中不断移动时, 便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。数学形态学基于探测的思想,与人的FOA(Focus Of Attention)的视觉特点有类似之处。作为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信息)来探测、研究图像的结构特点。1

应用数学形态学的基本思想及方法适用于与图像处理有关的各个方面,如基于击中/击不中变换的目标识别,基于流域概念的图像分割,基于腐蚀和开运算的骨架抽取及图像编码压缩,基于测地距离的图像重建,基于形态学滤波器的颗粒分析等。迄今为止,还没有一种方法能像数学形态学那样既有坚实的理论基础,简洁、朴素、统一的基本思想,又有如此广泛的实用价值。有人称数学形态学在理论上是严谨的,在基本观念上却是简单和优美的。

数学形态学是一门建立在严格数学理论基础上的学科,其基本思想和方法对图像处理的理论和技术产生了重大影响。事实上,数学形态学已经构成一种新的图像处理方法和理论,成为计算机数字图像处理及分形理论的一个重要研究领域,并且已经应用在多门学科的数字图像分析和处理的过程中。这门学科在计算机文字识别, 计算机显微图像分析(如定量金相分析,颗粒分析), 医学图像处理(例如细胞检测、心脏的运动过程研究、脊椎骨癌图像自动数量描述),图像编码压缩,工业检测(如食品检验和印刷电路自动检测),材料科学, 机器人视觉,汽车运动情况监测等方面都取得了非常成功的应用。另外,数学形态学在指纹检测、经济地理、合成音乐和断层X光照像等领域也有良好的应用前景。形态学方法已成为图像应用领域工程技术人员的必备工具。目前,有关数学形态学的技术和应用正在不断地研究和发展。2

本词条内容贡献者为:

任毅如 - 副教授 - 湖南大学