1873年,德国科学家E.Abbe揭示了传统光学显微镜由于光的衍射效应和有限孔径分辨率存在因此产生的分辨率的极限原理。由于可见光的波动性,其可以发生衍射,因此光束不能无限聚焦。
简介根据此,分辨率极限数值大约为λ⁄2n,其中λ是光波波长,n是样品介质的折射率。 2014年获得诺贝尔化学奖给的三个物理学家:艾力克·贝齐格(Eric Betzig)、斯特凡·W·赫尔(Stefan W. Hell)和W·E·莫纳(W. E. Moerner),就是为了表彰他们对于发展超分辨率荧光显微镜做出贡献,而他们发明这种显微镜的目的就是为了突破阿贝分辨率极限。
然而,几乎与贝齐格2006年发明PALM同时,哈佛大学化学系与物理系的华人教授庄小威也独立发明了另一种超分辨率显微镜(STORM,stochastic optical reconstruction microscopy)。
PALM和STORM这两种显微技术不仅同年,而且原理也基本一致。不同之处在于贝齐格利用的是光激活蛋白,而庄小威使用的是有机荧光分子对。但很遗憾的是,庄小威并未能分享诺贝尔化学奖。
分辨率分辨率可以从显示分辨率与图像分辨率两个方向来分类。
显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。
图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。
相关研究超分辨率复原方法的概念和理论基础;重点总结了常用的超分辨率复原方法,并对相关的理论依据、优缺点和适用范围进行了详尽分析;对超分辨率复原方法的未来发展进行了展望1。
由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注2。
超分辨率复原方法分为频域法和空域法。频域复原法原理简单清楚,计算方便,但是所建立的运动模型都是平移模型,不具有一般性,同时难以利用正则化约束,因而导致难以使用图像的先验信息进行超分辨率复原。
空域复原法可以很方便地建立复杂的运动模型,同时考虑了几乎所有的图像降质因素,例如噪声、降采样、由非零孔径时间造成的模糊、光学系统降质和运动模糊等,还可以加入更完善的先验知识,相比于频域复原法,空域超分辨率复原模型更符合实际的图像退化过程,是应用最广泛的一类超分辨率复原方法。
本词条内容贡献者为:
尹维龙 - 副教授 - 哈尔滨工业大学