用化学动力学原理及宏观动力学方法研究从矿石提取金属及其化合物的各种冶金过程的一门学科。它和冶金过程热力学一样,是冶金过程物理化学的一个分支。冶金过程动力学研究冶金过程(包括冶金反应及物理过程)的速度及其机理,是提高冶金过程的冶炼强度、缩短冶炼时间、提高冶金产品质量、促进冶金工业自动化、探讨和开发冶金新技术及新流程的重要手段。
基本简介微观动力学和宏观动力学 冶金过程通常是在高温、有多相存在和有流体流动下的物理化学过程。反应速度除了受温度、压力和化学组成及结构等因素的影响外,还受反应器(如冶金炉等)的形状和物料的流动状况以及热源等因素的影响。当反应的条件发生变化时,反应进行的途径(步骤)即反应机理也要发生变化。从分子理论微观地研究反应速度和机理称为微观动力学。一般情况,物理化学中的化学动力学属于微观动力学的范畴;结合反应装置在有流体流动、传质及传热条件下宏观地研究反应速度和机理称为宏观动力学。冶金过程动力学即属于宏观动力学的范畴。
反应的控制步骤 为使某一反应进行,必须将参与反应的物质传送到反应进行的地点(界面),在那里发生反应,并使反应产物尽快排除。其中速度最慢的步骤限制着整个反应的速度,这个最慢的步骤称为控制步骤或限制环节。研究反应速度的目的就是要弄清在各种条件下反应进行的各种步骤,也即反应的机理,找出它的限制环节,并导出在给定条件下反应进行的速度方程式,以便用来控制和改进实际操作。
相关概念反应速度 通常以单位时间物质i的浓度Ci(对非理想溶液采用活度ai)的变化来表示,即反应速度表示为:
对反应物,反应速度Vi是负值;对产物则Vi为正值。
以不可逆反应aA+bB→cC+dD为例,如果体系的总体积不变,则反应物减少量和产物生成量与方程式中计量比a、b、c、d 的关系为
-dCΑ∶-dCB∶dCC∶dCD =a∶b∶c∶d
用反应物(A或B)或产物(C或D)的浓度表示的反应速度的相互关系为
根据质量作用定律
k为反应速度常数(或比反应速度),指数 (m+n)值为反应级数。反应级数与方程式的计量比一致时(即m=a,n=b),该反应称为基元反应(elementary reaction),服从质量作用定律。但许多反应不是一步完成,或有许多副反应,因而反应级数不与方程式的计量比一致,即(m +n)/ (a+b),而其值也不一定是整数,应由实验测得。
氧气顶吹转炉炼钢的脱碳反应,由钢液中的反应方程式【C】+【O】→CO来看,似应为二级反应,但实验表明,此反应相当复杂,其反应级数随冶炼阶段而变化(表1)。由于炼钢过程的重要反应大部分在钢液-熔渣界面上进行,单纯研究均相反应的级数,其实际意义不大。 1
化学原理对于钢液-熔渣反应,例如:钢液中的Mn与溶渣中的FeO(Fe2+)反应:
【Mn】+(FeO)→(MnO)+【Fe】
或 【Mn】+(Fe2+)→(Mn2+)+【Fe】
其进行步骤为:
① 钢液中Mn原子向钢渣界面扩散移动;
② 渣中Fe2+离子向钢渣界面扩散移动;
③ 在钢渣界面上完成化学反应;
④ 生成的Mn2+离子从界面向渣内部扩散移动;
⑤ 生成的Fe原子从界面向钢液内部扩散移动。
步骤③是化学反应,在高温下反应速度很快,不可能是控制步骤。曾根据渣中含Mn2+5%、Fe2+20%,钢液中含Mn0.2%,温度为1600℃进行过计算(表2)。
可以看出④的速度最慢,是控制步骤,它控制着[Mn]氧化入渣的整个反应。根据现有的研究成果,在炼钢杂质去除过程中,硅、磷在钢液中的扩散是控制步骤,而锰、硫在渣中的扩散是控制步骤。但当渣中含有大量不溶解的磷酸钙或氧化钙时,PO43-离子在渣中的扩散则成为磷的氧化反应的控制步骤。提高温度降低熔体粘度或采用搅拌(机械或气体搅拌)均可提高传质速度。未反应核模型常用来研究气-固反应总反应速度的模型。以铁矿石还原为例:
Fe3O4+4CO→3Fe+4CO2
设球形试样(如球团矿,见图3)还原时,反应区域是由表面等速向中心推进的;反应前后,球团的体积没有变化;固态产物是多孔的;还原气体可以通过产物层扩散(内扩散)到反应区域。当界面的化学反应按一级反应处理时,还原总反应速度为:
式中, ṅ 为总反应速度(摩尔/秒);r0为球团的半径(米或厘米);r为未反应核的半径(米或厘米);C0为气体内部还原气体的浓度(摩尔/米3);C*为同气体产物相平衡的还原气体的浓度(摩尔/米3);βg为气体边界层的传质系数(米/秒或厘米/秒);K为反应的平衡常数;k为反应前进方向的速度常数(米/秒或厘米/秒);D有效为有效扩散系数(米2/秒或厘米2/秒),可按D有效=Dεξ求得,其中D为还原气体在自由空间的扩散系数,ε是产物层的气孔率,ξ是迷宫度系数;因为产物层中的气孔不是直通的,而是象迷宫一样错综分布,还原气体在产物层中的扩散途径要比直线距离长得多,所以用ξ加以修正。
总反应速度公式右边分母第一项代表气体边界层的传质阻力,第二项代表还原气体通过固体多孔产物层的内扩散阻力,第三项代表界面化学反应的阻力。这些阻力的相对作用大小随着矿石的种类、性质和反应条件而变化。
未反应核的半径r是无法直接测得的,在应用该式时常用反应的转化率或还原度f来代替:
代入上列总反应式中,得
式中d0是矿石中需要还原去除的氧浓度(摩尔/米3)。利用此式可以求出欲达到某个还原度所需的时间。
冶金过程中的铁矿石还原,石灰石焙解等都是适用未反应核模型的气固相反应。但由于矿石颗粒本身也有孔隙度,化学反应可能在颗粒内部任何地区进行,不一定有一明确的反应区域;而且因为这些反应经常是吸热的,需要外来热源,伴有传热现象;所以全面地分析尚需要更复杂的反应模型。
冶金过程动力学的发展概况从分子理论研究反应速度的化学动力学自1850年开始,已有百余年的历史。应用于冶金过程的宏观动力学自20世纪40年代末期开始发展。随着氧气顶吹转炉炼钢、连续铸锭、闪速熔炼和喷射冶金等新技术的发展,冶金过程动力学已成为70年代以来颇为活跃的边缘学科。除了用动力学理论及实验方法研究冶金过程的反应速度和机理外,冶金过程动力学的另一个发展趋势是向冶金反应工程学发展。2
本词条内容贡献者为:
李晓林 - 教授 - 西南大学