版权归原作者所有,如有侵权,请联系我们

[科普中国]-微机线路保护

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

微机线路保护包括电流速断、过流、差动、距离等。微机保护硬件可分为人机接口和保护两种。相应的软件也就分为接口软件和保护软件。保护软件的三种工作状态为运行、调试、不对应状态。

微机线路保护特点1)维护调试方便

2)可靠性高

3)动作正确率高

4) 易于获得各种附加功能

5)保护性能容易得到改善

6)使用灵活、方便

7)具有远方监控特性

微机线路保护硬件结构1.继电保护的基本结构大致上可以分为三部分:①信息获取与初步加工 ②信

息的综合、分析与逻辑加工、决断 ③决断结果的执行

2.微机保护装置实质是一种依靠单片微机智能地实现保护功能的工

业控制装置:①信号输入回路(模拟量、开关量)②单片微机

统③人机接口部分④输出通道回路⑤电源

3.微机保护装置输入信号主要有两类: 开关量 、 模拟信号

4.微机保护的数据采集系统主要有两种方案:

1)采用逐次逼近原理的A/D芯片构成的数据采集系统

2)采用VFC芯片构成的积分式数据采集系统

5.变换器:电流变换器(TA),电压变换器(TV),电抗变换器(TL)

6.采样保持器的作用:①对各个电气量实现同步采样 ②在模数变换过程中输入的模拟量保持不变 ③实现阻抗变换

7.微型计算机中的总线通常分为:①地址总线(AB)②数据总线(DB)③控制总线(CB)

微机线路保护软件原理1.微机保护硬件可分为:人机接口、保护

相应的软件也就分为:接口软件、保护软件

2.保护软件三种工作状态:运行、调试、不对应状态

3.实时性:在限定的时间内对外来事件能够及时作出迅速反应的性

4.微机保护算法主要考虑:计算机精度和速度1

中低压线路保护程序逻辑原理4.选项子程序原理:判别故障相(选项),判定了故障的种类及相别,才能确定阻抗计算应取用什么 相别的电流和电压

5.电力系统的振荡大致分为:

一种 静稳破坏引起系统振荡,另一种 由于系统内故障切除时间过长,导致系统的两侧电源之间的 不同步引起的

超高压线路保护程序逻辑原理6.高频闭锁方向保护的启动元件两个任务:

一是 启动后解除保护的闭锁

二是 启动发信回路,因此要求启动元件灵敏度高,以防止故障时不能启动发信

7.(1)闭锁式高频方向保护基本原理:

闭锁式高频方向保护原则上规定每端短路功率方向为正时,不送高频信号。因此在故障时收不到高频信号表示两侧都为正方向,允许出口跳闸;在一段相对较长时间内收到高频信号时表示两侧中有一侧为负方向,就闭锁保护。

(2)允许式高频方向保护基本原理:

当两侧均发允许信号时,可判断是区内故障,但就每一侧而言,其程序逻辑是收到对侧允许信号及 本侧视正方向,同时满足经延时确认后发跳闸脉冲。

8.综合重合闸四种工作方式:单相、三相、综合、停用

综合重合闸两种启动方式:①由保护启动 ②由断路器位置不对应启动

电力变压器微机线路保护9.比率制动式差动保护的基本概念:比率制动式差动保护的动作电流是随外部短路电流按比率增大, 既能保证外部短路不误动,又能保证内部短路有效高的灵敏度

10.二次谐波制动原理:

在变压器励磁涌流中含有大量的二次谐波分量,一般占基波分量的40%以上。利用差电流中二次谐 波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时 保护的误动。

11.变压器零序保护

主变零序保护适用于110KV及以上电压等级的变压器。主变零序保护由主变零序电流、主变零序电 压、主变间隙零序电流元件构成,根据不同的主变接地方式分别设置如下三种保护形式:

①中性点直接按接地保护方式

②中性点不接地保护方式

③中性点经间隙接地保护方式

12.在放电间隙放电时。应避免放电时间过长。为此对于这种接地式应装设专门的反应间隙放电电流的 零序电流保护,其任务是即时切除变压器,防止间隙长时间放电

微机母线保护及断路器失灵保护13.1)母线是发电厂和变电站重要组成部分之一。母线又称汇流是汇集电能及分配电能的重要设备

2)在发电厂或变电站,当母线电压为 35至66kv出线较少时,可采用单母线接线方式;而出线较 多时,可采用单母线分段;对110kv母线,当出线数不大于4回线时,可采用单母线分段

3)母线故障类型主要有 :单相接地故障,两相接地短路故障(几率小)及三相短路故障

4)要求:①高度安全性可靠性 ②选择性强、动作速度快

14.母差保护分类

按阻抗分类:高、中、低母差保护

低阻抗母差保护(电流型母线差动保护) 按动作条件分:

①电流差动式母差保护 ②母联电流比相式母差保护③电流相位比较式母差保护

15.大差元件用于检查母线故障,小差元件选择出故障所在的哪段或哪条母线

16.不同型号母差保护,采用的启动元件有差异,通常有:电压工频变化量元件、电流工频变化量元 件、差流越限元件

17.TA饱和时其二次电流有如下特点:

(1)在故障瞬间,由于铁芯中的磁通不能越变,不能立即进入饱和区,而是存在一个时域为3至5ms 的线性传递区。在线性传递区内,二次电流与一次电流成正比

(2)饱和之后,在每个周期内一次电流流过零点附近存在不饱和时段,在此段内,二次电流又与 一次电流成正比

(3)饱和后其励磁阻抗大大减小,使其内阻大大降低,严时内阻为零

(4)其二次电流偏于时间轴一侧,致使电流的正、负半波不对 称,电流中有很大的二次和三次谐波电流分量

18.饱和鉴别元件的构成原理:

(1)同步识别法:当母线上发生故障时,母线电压及各出线元件上的电流将发生很大的变化,于此同 时在差动元件中出现差流,即电压或工频电流的变化量与差动元件中的差流是同时出现

(2)自适应阻抗加权抗饱和法

(3)基于采样值的重复多次判别法

(4)谐波制动原理

本词条内容贡献者为:

张静 - 副教授 - 西南大学