量子力学的真空与一般认知的真空不同。在量子力学里,真空并不是全无一物的空间,虚粒子会持续地随机生成或湮灭于空间的任意位置,这会造成奥妙的量子效应。将这些量子效应纳入考量之后,空间的最低能量态,是在所有能量态之中,能量最低的能量态,又称为基态或“真空态”。最低能量态的空间才是量子力学的真空。描述物理系统的方程所具有的对称性,这最低能量态可能不具有,这现象称为自发对称性破缺。
在标准模型里,为了满足定域规范不变性,规范玻色子的质量必须设定为零;但这不符合实验观察结果──W玻色子与Z玻色子都已经通过做实验检验确实拥有质量。因此,这些玻色子必须倚赖其它种机制或作用来获得质量。
假定有一种遍布于宇宙的复值希格斯场 ,而希格斯势与希格斯场的关系形状好似一顶墨西哥帽,最低能量态不在帽顶,而是在帽子谷底,在这里有无穷多个简并的最低能量态,其对应的希格斯场不等于零。每一个最低能量态位置都不具有旋转对称性。在这无穷多个最低能量态之中,只有一个最低能量态能够被实现,旋转对称性因此被打破,造成自发对称性破缺,因此使规范玻色子获得质量,同时生成一种零质量玻色子,称为戈德斯通玻色子,而希子则是伴随着希格斯场的粒子,是希格斯场的振动。
希格斯玻色子希格斯玻色子(英语:Higgs boson)是标准模型里的一种基本粒子,是一种玻色子,自旋为零,宇称为正值,不带电荷、色荷,极不稳定,生成后会立刻衰变。希格斯玻色子是希格斯场的量子激发。根据希格斯机制,基本粒子因与希格斯场耦合而获得质量。假若希格斯玻色子被证实存在,则希格斯场应该也存在,而希格斯机制也可被确认为基本无误。
物理学者用了四十多年时间寻找希格斯玻色子的踪迹。大型强子对撞机(LHC)是全世界至今为止最昂贵、最复杂的实验设施之一,其建成的一个主要任务就是寻找与观察希格斯玻色子与其它种粒子。2012年7月4日,欧洲核子研究组织(CERN)宣布,LHC的紧凑渺子线圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超过背景期望值4.9个标准差),超环面仪器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两种粒子极像希格斯玻色子。2013年3月14日,欧洲核子研究组织发表新闻稿正式宣布,先前探测到的新粒子暂时被确认是希格斯玻色子,具有零自旋与偶宇称,这是希格斯玻色子应该具有的两种基本性质,但有一部分实验结果不尽符合理论预测,更多数据仍在等待处理与分析。
希格斯玻色子是因物理学者彼得·希格斯而命名。他是于1964年提出希格斯机制的六位物理学者中的一位。2013年10月8日,因为“次原子粒子质量的生成机制理论,促进了人类对这方面的理解,并且最近由欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器发现的基本粒子证实”,弗朗索瓦·恩格勒、彼得·希格斯荣获2013年诺贝尔物理学奖。1
理论发展史物理学者认为物质是由基本粒子组成,这些基本粒子彼此之间相互影响的基本力有四种。根据规范场论,为了满足定域规范对称性,必须引入传递基本力的规范玻色子。特别而言,传递电磁力的规范玻色子就是光子。1954年,杨振宁与罗伯特·米尔斯试图将这关于电磁力的点子延伸至其他种基本力,他们提出了杨-米尔斯理论,但是规范场论预测规范玻色子的质量必须为零,而零质量玻色子传递的是类似电磁力的长程力,不适用于像弱核力或强核力一类的短程力。
怎样才能够使得传递短程力的规范玻色子获得质量?物理学者在凝聚态物理学的超导理论里找到重要暗示。1950年,俄国物理学者维塔利·金兹堡与列夫·郎道提出金兹堡-朗道理论,他们建议,在超导体里,弥漫着一种特别的场,能够使得光子获得有效质量,但他们并没有明确地描述这特别场。1957年,约翰·巴丁、利昂·库珀、约翰·施里弗共同创建了BCS理论,他们认为,由电子组成的库珀对,形成了这特别场。规范对称性被这特别场隐藏起来,因此造成自发对称性破缺──虽然对称性仍旧存在于描述这物理系统的方程,但是方程的某种解答并不具有这对称性。
南部阳一郎于1960年将自发对称性破缺的概念引入粒子物理学。他建议,假定夸克与反夸克的质量为零,则生成它们的能量成本很低,如同电子们在超导体里凝聚为库珀对,它们会在真空里凝聚为夸克对,使得强相对作用的手征对称性被打破,夸克会因此获得质量。他又指出,在这机制里,还会出现一种新的零质量玻色子,即π介子,由于上夸克、下夸克的质量不等于零,π介子的实际质量不等于零,只是比其他种介子的质量都轻很多。1962年,杰福瑞·戈德斯通提出戈德斯通定理,对于这类零质量玻色子的性质给予描述。根据这定理,当连续对称性被自发打破后必会生成一种零质量玻色子,称为戈德斯通玻色子。带质量粒子比较难制成,粒子加速器必须使用很高的能量来碰撞制成带质量粒子。零质量粒子案例跟重质量粒子案例不同,零质量粒子很容易制成,或者可从缺失能量或动量推测其存在。然而,事实并非如此,物理学者无法做实验找到其存在的任何蛛丝马迹,这事实意味着整个理论可能有瑕疵。1963年,菲利普·安德森发表论文指出,对于非相对论性的超导体案例,假若是规范对称性被打破,则不一定会出现戈德斯通玻色子,他进一步猜测,这机制应该可以加以延伸来处理相对论性案例,但他并没有明确地给出一个相对论性案例。这论述遭到未来诺贝尔化学奖得主沃特·吉尔伯特强烈反对。
1964年,弗朗索瓦·恩格勒和罗伯特·布绕特领先于8月,紧接着,彼得·希格斯于10月,随后,杰拉德·古拉尼、卡尔·哈庚和汤姆·基博尔于11月,这三个研究小组分别独立地发表论文,宣布研究出相对论性模型。古拉尼于1965年、希格斯于1966年、基博尔于1967年,又分别更进一步发表论文探讨这模型的性质。这三篇1964年论文共同表明,假若将局部规范不变性理论与自发对称性破缺的概念以某种特别方式连结在一起,则规范玻色子必然会获得质量。1967年,史蒂文·温伯格与阿卜杜勒·萨拉姆各自独立地应用希格斯机制来打破电弱对称性,并且表述希格斯机制怎样能够并入稍后成为标准模型一部分的谢尔登·格拉肖的电弱理论。温伯格指出,这过程应该也会使得费米子获得质量。
关于规范对称性的自发性破缺的这些划时代论文,最初并没有得到学术界的重视,因为大多数物理学者认为,非阿贝尔规范理论是个死胡同,无法被重整化。1971年,荷兰物理学者马丁纽斯·韦尔特曼与杰拉德·特·胡夫特发表了两篇论文,证明杨-米尔斯理论(一种非阿贝尔规范理论)可以被重整化,不论是对于零质量规范玻色子,还是对于带质量规范玻色子。自此以后,物理学者开始接受这些理论,正式将这些理论纳入主流。
从这些理论孕育出的电弱理论与改善后的标准模型,正确地预测了弱中性流、W玻色子、Z玻色子、顶夸克、粲夸克,并且准确地计算出其中一些粒子的性质与质量。很多在这领域给出重要贡献的物理学者后来都获得了诺贝尔物理学奖与其它享有声望的奖赏。发表于《现代物理评论》的一篇1974年文章表示,至今为止,这些理论推导出的答案符合实验结果,但是,这些理论到底是否正确仍旧无法确定。权威著作《希格斯狩猎者指南》的作者指明,标准模型拥有惊人的成功。现今,粒子物理学的核心问题就是了解希格斯区的相关理论。
物理评论快报1964年里程碑论文六位物理学者分别发表的三篇论文,在《物理评论快报》50周年庆祝文献里被公认为里程碑论文。2010年,他们又荣获理论粒子物理学樱井奖。同年,在他们之间,又发生了一点争执,万一因此获得诺贝尔物理学奖,由于每一年只能授予给三位杰出人士,而现在有六位人士做出了关键贡献,到底应该颁发物理学最荣誉的奖给哪三位人士?(结果,弗朗索瓦·恩格勒和彼得·希格斯获得了2013年诺贝尔物理学奖。)
1964年8月,恩格勒团队发表了三页论文,他们假定存在有复值标量场(即希格斯场),其数值在量子真空里不等于零,然后使用费曼图方法演示出规范玻色子怎样获得质量。恩格勒团队并没有提到任何关于希子的信息。稍后,希格斯独立发表论文概述怎样能够应用定域规范对称性来回避戈德斯通定理,他并没有给出模型明确显示戈德斯通玻色子被抵销。不久之后,希格斯发表第二篇论文,他更仔细的表述这回避方法,给出一个可行模型,并且用这模型演示出规范矢量场怎样吃掉戈德斯通玻色子,因此获得质量。他将这篇论文被呈送给《物理快报》,但是令人惊讶地没有被接受。他无法理解,为什么同样的学术刊物,会接受一篇关于“带质量规范玻色子可能存在”的论文,又会否绝一篇描述“带质量规范玻色子实际模型”的文章。希格斯不因此而气馁,他又添加了一些内容,从他给出的模型,他预测另外存在一种带质量玻色子,后来知名为“希格斯玻色子”希格斯的1966年论文推导出希子的衰变机制;只有带质量玻色子可以衰变,假若找到衰变的迹象,就可以证实希子存在。
古拉尼团队论文提到了恩格勒团队与希格斯先前分别独立发表的论文。古拉尼团队论文是唯一对于整个希格斯机制给出完整分析的论文。这论文也推导出希子的存在,但是希格斯的希子具有质量,而古拉尼团队的希子不具有质量,这结果令人疑问两种希子是否相同。在2009年与2011年发表的两篇论文中,古拉尼解释,在古拉尼团队给出的模型里,取至最低阶近似,玻色子的质量为零,但是这质量的数值没有被任何理论限制;取至较高阶,玻色子可以获得质量。
希格斯机制不但解释了规范玻色子怎样获得质量,还预测这些玻色子与标准模型的费米子之间的耦合。经过在大型正负电子对撞机(LEP)和斯坦福线性加速器(SLAC)做精密测量实验,很多预测都已经核对证实,因此确认大自然实际存在这一机制。但物理学者仍旧不清楚希格斯机制到底是怎样发生,他们希望能从寻找希子所得到的结果获得一些这方面的证据。1
理论主条目:希格斯机制
量子力学的真空与一般认知的真空不同。在量子力学里,真空并不是全无一物的空间,虚粒子会持续地随机生成或湮灭于空间的任意位置,这会造成奥妙的量子效应。将这些量子效应纳入考量之后,空间的最低能量态,是在所有能量态之中,能量最低的能量态,又称为基态或“真空态”。最低能量态的空间才是量子力学的真空。描述物理系统的方程所具有的对称性,这最低能量态可能不具有,这现象称为自发对称性破缺。
在标准模型里,为了满足定域规范不变性,规范玻色子的质量必须设定为零;但这不符合实验观察结果──W玻色子与Z玻色子都已经通过做实验检验确实拥有质量。因此,这些玻色子必须倚赖其它种机制或作用来获得质量。
如右图所示,假定有一种遍布于宇宙的复值希格斯场 ,而希格斯势与希格斯场的关系形状好似一顶墨西哥帽,最低能量态不在帽顶,而是在帽子谷底,在这里有无穷多个简并的最低能量态,其对应的希格斯场不等于零。每一个最低能量态位置都不具有旋转对称性。在这无穷多个最低能量态之中,只有一个最低能量态能够被实现,旋转对称性因此被打破,造成自发对称性破缺,因此使规范玻色子获得质量,同时生成一种零质量玻色子,称为戈德斯通玻色子,而希子则是伴随着希格斯场的粒子,是希格斯场的振动。但这戈德斯通玻色子并不符合实际物理。通过选择适当的规范,戈德斯通玻色子会被抵销,只存留带质量希子与带质量规范玻色子。总括而言,利用自发对称性破缺,使得规范玻色子获得质量,这就是希格斯机制。在所有可以赋予规范玻色子质量,而同时又遵守规范理论的可能机制中,这是最简单的机制。
按照希格斯机制,复值希格斯场(两个自由度)与零质量规范玻色子(横场,如同光子一样,具有两个自由度)被变换为带质量标量粒子(希子,一个自由度)与带质量规范玻色子(戈德斯通玻色子变换为一个纵场,加上先前的横场,共有三个自由度),自由度守恒。
费米子也是因为与希格斯场相互作用而获得质量,但它们获得质量的方式不同于W玻色子、Z玻色子的方式。在规范场论里,为了满足定域规范不变性,必须设定费米子的质量为零。通过汤川耦合,费米子也可以因为自发对称性破缺而获得质量。
标准模型希子的性质稍微复杂一点,但更实际一点,在最小标准模型(minimal standard model)里,希格斯场是复值二重态,是由两个复值标量场,或四个实值标量场组成,其中,两个带有电荷,两个是中性。在这模型里,还有四个零质量规范玻色子,都是横场,如同光子一样,具有两个自由度。总合起来,一共有十二个自由度。自发对称性破缺之后,一共有三个规范玻色子会获得质量、同时各自添加一个纵场,总共有九个自由度,另外还有一个具有两个自由度的零质量规范玻色子,剩下的一个自由度是带质量的希子。三个带质量规范玻色子分别是W、W和Z玻色子。零质量规范玻色子是光子。由于希格斯场是标量场(不会因洛伦兹变换而改变),希子不具有自旋。希子不带电荷,是自己的反粒子,具有CP-偶性。
标准模型并没有预测希子的质量。假若质量在115和180 GeV之间,则能量尺度直到普朗克尺度(10GeV)上限,标准模型都有效。基于标准模型的一些不令人满意的性质,许多理论学者认为后标准模型的新物理会出现于TeV能量尺度。希子(或其他的电弱对称性破缺机制)能够具有的质量的尺度上限是1.4 TeV;超过此上限,标准模型变得不相容,因为对于某些散射过程违反了幺正性。现今,学术界有超过一百种不同关于希格斯质量的理论预测。
理论而言,希子的质量或许可以间接估计。在标准模型里,希子会造成一些间接效应。最值得注意的是,希格斯回路会造成W玻色子质量和Z玻色子质量的小额度修正。通过整体拟合从各个对撞机获得的精密电弱数据,可以估计希子的质量为94+29
−24GeV,或小于152GeV,置信水平95%。
希子可能会与前面提到的标准模型粒子相互作用,但也可能会与诡秘的大质量弱相互作用粒子相互作用,形成暗物质,这在近期天文物理学研究领域里,是很重要的论题。
希子的衰变在量子力学里,假若粒子有可能衰变成一组质量较轻的粒子,则这粒子必会如此衰变。衰变发生的概率与几种因素有关:质量差值、耦合强度等等。标准模型已将大多数这些因素设定,希子质量是一个例外。假设希子质量为126GeV,则标准模型预测平均寿命(mean lifetime)大约为1.6×10秒。
由于希子会与每一种“已知”带质量基本粒子相互作用,希子有很多种不同的衰变道。每种衰变道都有其发生的概率,称为分支比(branching ratio),定义为这种衰变道发生的次数除以总次数。右图展示出,标准模型预测的几种不同衰变模式的分支比与质量之间的关系。
在这几种希子衰变道之中,有一种衰变道是分裂为费米子反费米子对。对于希子衰变,产物质量越大,则耦合强度越大(呈线性或平方关系)。因此,希子比较可能衰变为较重的费米子,希子应该最常衰变为顶夸克反顶夸克对。但是,这种衰变必须遵守运动学约束,即希子质量必须大于346GeV,顶夸克质量的两倍。假设希子质量为126GeV,则标准模型预测最常发生的衰变为底夸克反底夸克对,概率为56.1%。第二常发生的衰变是τ子反τ子对,概率为6%。
希子也有可能分裂为一对带质量规范玻色子。对于这模式,希子最有可能衰变为一对W玻色子,假设希子质量为126GeV,则概率为23.1%。在这之后,W玻色子可以衰变为夸克与反夸克,或者,衰变为轻子与中微子。这最后一种模式不能被重建,因为无法探测到中微子。希子衰变为一对Z玻色子会给出较干净的讯号,若果Z玻色子会继续衰变为易探测的带电荷轻子反轻子对(电子或μ子)。假设希子质量为126GeV,则概率为2.9%。
希子还可能衰变为零质量胶子,但是中间需要经过夸克圈。对于这模式,最常会经过顶夸克圈,因为顶夸克最重,也因为如此,虽然这是个单圈图(one-loop diagram),而不是树图(tree-level diagram),它发生的衰变概率仍旧可观,不容忽略。假设希子质量为126GeV,则概率为8.5%。
比较稀有的是希子衰变为零质量光子,概率为0.2%,这过程中间需要经过费米子圈或W玻色子圈。由于光子的能量与动量可以非常准确地测量,衰变粒子的质量可以准确重建出来。所以,在探索低质量希子的实验中,这过程非常重要。2
实验探索主条目:希格斯玻色子的实验探索
为了要制成希子,在粒子对撞机里,两道粒子束被加速到非常高能量,然后在粒子探测器里相互碰撞,有时候,异乎寻常地,会因此生成产物希子。但是希子会在生成后会在非常短暂时间内发生衰变,无法直接被探测到,探测器只能记录其所有衰变产物(“衰变特征”),从这些实验数据,重建衰变过程,假若符合希子的某种衰变道,则归类为希子可能被生成事件。实际而言,很多种过程都会出现类似的衰变特征。很庆幸地是,标准模型精确地预言所有可能衰变模式与对应的或然率,假若探测到更多能够匹配希子衰变特征的事件,而不是更多不同于希子衰变特征的事件,则这应该是希子存在的强烈证据。
在大型强子对撞机里,由于粒子碰撞生成希子的事件概率非常稀有,大约为百亿分之一,很多其它种碰撞事件具有类似的衰变特征,物理学者必须搜集与分析几百万亿个碰撞事件,只有显示出与希子相同衰变特征的事件才可被视为是可能的希子衰变事件。在确认发现新粒子之前,两个独立的粒子探测器(ATLAS与CMS)所观测到的衰变特征出自于背景随机标准模型的事件概率,都必须低于百万分之一,也就是说,观测到的事件数量比没有新粒子的事件数量,两者之间相异的程度为5个标准差。更多碰撞数据能够让物理学者更为正确地辨认新粒子的物理性质,从而决定新粒子是否为标准模型所描述的希子,还是其它种假想粒子。
低能量实验设施可能无法找到希子,必须建造一座高能量粒子对撞机,这对撞机还需要具有高亮度来确保搜集到足够的碰撞数据。另外,还需要高功能电脑设施来有序处理大量碰撞数据(大约25petabyte每年)。至2012年为止,它的附属电脑设施,全球大型强子对撞机计算网格(Worldwide LHC Computing Grid)已处理了超过三百万亿(3×1014)个碰撞事件。这是全球最大的计算网格,隶属于它的170个电算设施,散布在36国家,是以分布式计算的模式连结在一起。
2012年7月4日以前的探索最早大规模搜寻希子的实验设施是欧洲核子研究组织的大型正负电子对撞机,它在1990年代开始运作,直到2000年为止,但它并没有找到希子的确切存在证据,这是因为它的专长是精密测量粒子的性质。根据大型正负电子对撞机所收集到的数据,标准模型希子的质量下限被设定为114.4 GeV,置信水平95%。这意味着假若希子存在,则它应该会重于114.4GeV/c2。
费米实验室的兆电子伏特加速器继承了先前搜寻希子的任务。1995年,它发现了顶夸克。为了搜寻希子,设施的功能被大大提升,但这并不能保证兆电子伏特加速器会发现希子。在那时期,它是唯一正在运作中的超级对撞机,大型强子对撞机正在建造,超导超大型加速器计划已于1993年取消。历经多年运作,兆电子伏特加速器只能对于更进一步排除希子质量值域做出贡献,由于能量与亮度无法与建成的大型强子对撞机竞争,于2011年9月30日除役。从分析获得的实验数据,兆电子伏特加速器团队排除希子的质量在100-103GeV、147-180GeV以内,置信水平95%。在能量115–140GeV之间区域,超额事件的统计显著性为2.5个标准差,这对应于在550次事件中,有一次事件是归咎于统计涨落。这结果仍旧未能达到5个标准差,因此不能够作定论。
欧洲核子研究组织的大型强子对撞机(LHC)的设计目标之一为能够确认或排除希子的存在。在瑞士日内瓦附近乡村的地底下,圆周为27km的坑道里,两个质子束相撞在一起,最初以3.5TeV每质子束(总共7TeV),大约为兆电子伏特加速器的3.6倍,未来还可提升至2 × 7 TeV(总共14TeV)。根据标准模型,假若希子存在,则这么高能量的碰撞应该能够将它揭露出来。这是史上最复杂的科学设施之一。在开启测试后仅仅九天,由于磁铁与磁铁之间电接连缺陷,发生磁体失超事件,造成50多个超导磁铁被毁坏、真空系统被污染,整个运作被迫延迟了14个月,直到2009年11月才再度重新运作 。
2010年3月,LHC开始紧锣密鼓地进行数据搜集与分析。2011年12月,LHC的两个主要粒子探测器,超环面仪器(ATLAS)和紧凑μ子线圈(CMS)的实验团队,已将希子的可能质量值域缩小至115-130 GeV(ATLAS)与117-127 GeV (CMS)。另外,ATLAS在质量范围125-126GeV探测到超额事件,统计显著性为3.6个标准差,CMS在质量范围124GeV探测到超额事件,统计显著性为2.6个标准差。由于统计显著性并不够大,尚无法做结论或甚至正式当作一个观察事件。但是,两个探测器都独立地在同样质量附近检测出超额事件,这事实使得粒子物理社团极其振奋,期望能够在检验完毕2012年的碰撞数据之后,于明年年底排除或确认标准模型希子的存在。CMS团队发言人吉多·桐迺立(Guido Tonelli)表示:“统计显著性不够大,无法做定论。直到今天为止,我们所看到的与背景涨落或与玻色子存在相符合。更仔细的分析与这精心打造的巨环在2012年所贡献出的更多数据必定会给出一个答案。”3
“上帝粒子”美国物理学家、1988年诺贝尔物理学奖获得者利昂·莱德曼曾著有粒子物理方面的科普书籍《上帝粒子:如果宇宙是答案,那么问题是什么?》,后来媒体也沿用了这一称呼,常常将希子称作是“上帝粒子”(The God Particle)。这一称呼激起了公众媒体对于希子的关注和兴趣。莱德曼说他以“上帝粒子”为这粒子命名是因为这粒子“在当今物理学中处于极为中心的位置,对我们理解物质的结构极为关键、也极为难以捉摸”。不过他也开玩笑地补充说另一个原因是“图书出版商不让他把这粒子称作‘该死的粒子(Goddamn Particle)’,尽管这别称可能更恰当地表达了希子杳无踪迹的性质以及人们为之所付出的代价与遭受到的挫折感。”然而,许多科学家却不喜欢这一称呼,因为它过分强调了这粒子的重要性和太宗教化。而且即使这粒子被发现,物理学者仍旧无法回答一些关于强相互作用、电弱相互作用、引力相互作用的统一化问题,以及宇宙的起源问题;希格斯本人是无神论学者。
2009年,英国的《卫报》展开了一次重命希子的竞赛,并最终从提交的命名中选择了“香槟酒瓶玻色子”(champagne bottle boson)作为最佳命名。“香槟酒瓶的瓶底正好是希格斯势的形状,而且它常常在物理讲座中被用来作为图解。因此它绝非胡乱编造的名字,而是便于记忆、与物理实际相关的名字。”4
参见希格斯机制
希格斯场
希格斯玻色子的实验探索
探寻希格斯玻色子时间轴
玻色-爱因斯坦统计
本词条内容贡献者为:
胡建平 - 副教授 - 西北工业大学