单相转变液晶,是仅仅由于降温而出现的液晶相。
概念单相转变液晶,是仅仅由于降温而出现的液晶相。而借升高温度,至某一温度范围内形成的液晶,称热致型液晶。借溶剂溶解分散,在一定浓度范围内形成的液晶,称溶致型液晶。1
液晶的电光效应液晶的电光效应是指它的干涉、散射、衍射、旋光、吸收等受电场调制的光学现象。下面以常用的向列型液晶为例,说明其工作原理。
向列型液晶光开关的结构如图所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1Å= 10-10m),直径为4~6Å,液晶层厚度一般为5~8μm。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里,使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德华力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45°方向排列逐步地、均匀地扭曲到下电极的沿+45°方向排列,整个扭曲了90°,如图所示。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90°。取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°这时光的偏振面与P2的透光轴平行,因而有光通过。在施加足够电压情况下(一般为1~2V),在静电场的吸引下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构,如图中右图所示。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此称为常通型光开关,又称为常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。2
相关概念溶致型液晶有些材料在溶剂中处于一定的浓度区间内会产生液晶,这类液晶我们称它为溶致液晶。例如可以利用溶致型液晶聚合物的液晶相的高浓度、低黏度的特性进行液晶纺丝制备高强度、高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。溶致型液晶生成的例子是肥皂水。在高浓度时,肥皂分子呈层列性,层间是水分子。浓度稍低,组合又不同。
热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和黏度等。在热致型液晶中,根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。2
本词条内容贡献者为:
李雪梅 - 副教授 - 西南大学