版权归原作者所有,如有侵权,请联系我们

[科普中国]-穆勒散射

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

在量子电动力学中,穆勒散射(英语:Møller scattering)指电子-电子到电子-电子的散射过程,得名于计算出极端相对论极限下该散射的截面的丹麦物理学家克里斯蒂安·穆勒。

简介在量子电动力学中,穆勒散射(英语:Møller scattering)指电子-电子到电子-电子的散射过程,得名于计算出极端相对论极限下该散射的截面的丹麦物理学家克里斯蒂安·穆勒。该过程可以表示为:

该散射截面的领头项由t-道和u-道两张费曼图贡献,它们分别描述两个电子交换虚光子进而发生散射的两个过程。穆勒散射的t-道图和u-道图分别与巴巴散射(即电子-正电子到电子正电子的散射)的s-道图和u-道图交叉对称。

穆勒散射的不对称性表示为:

其中m是电子质量,E是入射电子的能量(在另一个电子的参考系中),是费米常数,是精细结构常数,是质量帧中心的散射角度,是弱的混合角,也称为Weinberg角。1

散射当传播中的辐射,像光波、音波、电磁波、或粒子,在通过局部性的位势时,由于受到位势的作用,必须改变其直线轨迹,这物理过程,称为散射。这局部性位势称为散射体,或散射中心。局部性位势各式各样的种类,无法尽列;例如,粒子、气泡、液珠、液体密度涨落、晶体缺陷、粗糙表面等等。在传播的波动或移动的粒子的路径中,这些特别的局部性位势所造成的效应,都可以放在散射理论(scattering theory)的框架里来描述。

单散射和多重散射假若辐射只被一个局部性散射体散射,则称此为单散射。假若许多散射体集中在一起,辐射可能会被散射很多次,称此为多重散射。单散射可以被视为一个随机现象;而多重散射通常是比较命定性的。这是两种散射的主要不同点。

由于单独的散射体的位置,相对于辐射路径,通常不会明确的知道。所以,散射结果强烈地依赖于入射轨道参数。对于观测者,散射结果显得相当的随机。移动电子朝着原子核碰撞是一个标准案例。由于不确定性原理,相对于电子的入射路径,原子的确定位置是个未知数,无法准确地测量出来,碰撞后,电子的散射行为是随机的。所以,单散射时常用概率分布来描述

在多重散射过程里,经过众多的散射事件,散射作用的随机性很容易会因为平均化而被凐灭不见,辐射的最终路径会显示为强度的命定性(deterministic)分布。光束穿过浓厚大雾是一个标准案例。多重散射可以与扩散类比。在许多状况,两个术语可以替代使用。用来制造多重散射的光学器材,称为扩散器

不是每一种单散射都是随机地。一个完美控制的激光束能够准确地散射于一个微粒,产生出命定性的结果。这样的状况也会发生于雷达散射,目标大多数是宏观物体,像飞机或火箭。

类似地,多重散射有时也会产生很随机的结果,特别是相干辐射。当相干辐射被多重散射的时候,强度会发生随机涨落,称此现象为散斑(speckle)。假若,一个相干辐射的不同部分散射于不同的散射体,则也会产生散斑。在某些罕见的状况,多重散射的散射次数并不多,随机性并没有被平均化凐灭。学术界公认,这类系统很不容易精确地模型化。

散射的主要研究问题,时常涉及到预测各种系统怎样散射辐射。给予足够的计算资源和系统信息,这些问题大都可以解析。一个广泛研究,更加困难的挑战是逆散射问题(inverse scattering problem)。这问题主要研究的是,从观测到的散射行为,来决定入射辐射或散射体的性质。一般而言,解答不是唯一的;不同的散射体可以给予同样的散射样式。幸运地,科学家找到一些方法,来萃取许多关于散射体的资料。虽然这些资料并不完全,但还是相当有用。这些方法广泛的用于感测和计量学(metrology)。

许多科技领域显著地应用到散射和散射理论。例如,雷达感测、超声波检查、半导体芯片检验、聚合过程监视、电脑成像等等。

电磁散射电磁波是一种最为人熟知,最常碰到的辐射形式。其中,光波散射是不可避免的日常现象。无线电波散射则乃雷达科技的核心物理机制。因为某些方面的不同,电磁波散射可以清楚地分支为不同的领域,各自有各自的取名。弹性散射(涉及极微小的能量转移)主要有瑞利散射和米氏散射。非弹性散射包括布里渊散射(Brillouin scattering)、拉曼散射、非弹性X-光散射、康普顿散射等等。

大多数物体都可以被看见,主要是因为两个物理过程:光波散射和光波吸收。有些物体几乎散射了所有入射光波,这造成了物体的白色外表。光波散射也可以给予物体颜色。例如,不同色调的蓝色,像天空的天蓝、眼睛的虹膜、鸟的羽毛等等。奈米粒子的共振光波散射会产生不同的高度饱和的,生动的色相,特别是当涉及表面等离子体共振(surface plasmon resonance)。

在瑞利散射里,电磁辐射(包括光波)被一个小圆球散射。圆球可能是一个粒子、泡沫、水珠、或甚至于密度涨落。物理学家瑞利勋爵最先发现这散射效应的正确模型,因此称为瑞利散射。为了要符合瑞利模型的要求,圆球的直径必须超小于入射波的波长,通常上界大约是波长的1/10。在这个尺寸范围内,散射体的形状细节并不重要,通常可以视为一个同体积的圆球。当阳光入射于大气层时,气体分子对于阳光的瑞利散射,使得天空呈现蓝色。这是根据瑞利著名的方程:

其中,是强度,是波长。

阳光的蓝色光波部分波长比较短,散射强度比较大;而红色光波部分波长比较长,散射强度比较小。外太空的辐射通过地球大气层时,衰减的主要原因是辐射吸收和瑞利散射。散射的程度变化是粒子直径与波长比例的函数,连同许多其它因子,像极化、角度、以及相干性等等。

瑞利散射不适用于直径较大的散射体。德国物理学家古斯塔夫·米最先找到这问题的解答。因此,大于瑞利尺寸的圆球的散射被称为米氏散射。在米氏区域内,散射体的形状变的很重要。这理论只能用在类球体。

瑞利散射和米氏散射都可以被视为弹性散射,光波的能量并没有大幅度地改变。可是,移动的散射体所散射的电磁波会产生多普勒效应,能量会稍微改变。这效应可以被用来侦测和测量散射体的速度,可以应用于光达(LIDAR)和雷达这一类科技仪器。

当粒子直径与波长比例大于10的时候,几何光学的定律可以用来描述光波与粒子的相互作用。在这里,通常不称这相互作用为散射。

对于一些瑞利模型和米式模型不适用的案例,像不规则形状粒子,有很多种不同的数值计算方法可以让我们选择使用,求算散射的解答。最常见的方法是有限元方法。此法解析麦克斯韦方程组,寻求散射的电磁场的分布。程式工程师特别设计出复杂的软件,专门计算这类问题。只需要使用者给出散射体的折射率或折射率函数,电脑就可以计算出电磁场结构的二维或三维模型。假若结构比较庞大复杂,则可能需要高功能电脑大量的运算时间,才能得到结果。

另外一种特别的电磁散射是相干回散射(backscatter)。这是一个相当不为人知的现象。当相干辐射(像激光光束)传播通过一个拥有很多散射体的介质时,电磁波会被散射很多次。一个代表性的多重散射介质例子是浓厚云块。朝着原本入射方向的反方向,相干回散射效应会产生一个非常大的峰值强度。实际上,一般的电磁波很大部分都会散射回去。对于非相干辐射,散射通常会在反方向产生一个局部最大值。可是,相干辐射的峰值强度是非相干辐射的两倍。测量这些数值是很困难的。原因有两个。第一个原因是,直接地测量回散射同时也会阻挡入射电磁波。但是,科学家已经想出精巧的方法来克服这问题。第二个原因是,强度峰通常会是非常的尖锐。侦测器必须拥有非常高的角分辨率,才能够看到峰值,不会将强度峰值与邻近的低强度值平均起来。2

虚粒子概述虚粒子(virtual particle),意即虚构粒子、假想粒子,是在量子场论的数学计算中建立的一种解释性概念,指代用来描述亚原子过程例如撞击过程中粒子的数学项。但是,虚粒子并不直接出现在计算过程的那些可观测的输入输出量中,那些输入输出量只代表实粒子。虚粒子项代表那些所谓离质量壳(off mass shell)的粒子。例如,它们沿时间反演、能量不守恒、以超光速移动,每条看起来都和物理基本原理相悖。虚粒子发生在那些大致可被实输出量相消的组合项中,因此才产生了前述那些不实的冲突。虚粒子的虚“事件”通常看起来是一个紧接着另一个发生,例如在一次撞击的时长中,所以他们显得短命。如果在计算中略去那些被诠释为代表虚粒子的数学项,计算结果将变成近似值,有可能较大地偏离完整计算得到的正确而且精确的结果。

量子理论不同于经典理论。区别在于对于亚原子过程的内部机制的计算。经典物理不能处理这种计算。海森堡认为,在亚原子过程例如碰撞中,到底“实际上”“真正”发生了什么,是不可直接观测的,也没有可用以描述的单一而且物理明确的图像。量子力学具有这样的特质:即它可以避开关于内部机制的思考。它把自己限制在那些实际上可观测可感知的方面。但是,虚粒子则是一种概念化的手段,通过给亚原子过程的内在机制提供假设性的诠释性图像,它试图绕过海森堡的洞察。

虚粒子不必具有和对应实粒子相等的质量。这是因为它短命而且瞬变,所以不确定性原理允许它不必守恒能量和动量。虚粒子存活得越久,它的特征就越接近实粒子。

理论由于测不准原理,虚粒子的能量与动量都是不确定的。虚粒子也有一些和实粒子(real particle)相同的特性,像是遵守守恒定律。如果一个单一的粒子被侦测到,那代表了它存在的时间长到了使它不可能成为虚粒子的程度,即虚粒子是不可能被观测到的。

虚粒子被用来描述那些无法用实粒子来描述的基本交互作用力的量子,静力场就是其中一个例子,像是电场或磁场,或是任何一种场,都无法以光的速度从一个位置来携带讯息至另一个位置(借由场来传播的资讯必须由实粒子来当载子)。虚光子也是一种近场的主要载子,而这种近场是一种短距的效应,而且不会拥有像电磁波的光子那样的特色。举个例子来说,当能量从缠绕的变压器到另一台变压器,或到MRI的扫描器上时,就量子而言这种携带能量的是虚光子而不是实光子。

虚粒子是由无质量的粒子所组成,像是光子,但虚粒子也是可能有质量的且被称之为离壳。因为它们只存在极短的时间里面(称之为有限的"range"),所以这些虚粒子被允许拥有质量。这是根据不确定原理而来的,不确定原理允许粒子的能量乘上它们存在的时间小于普朗克常数即可。拥有质量更使得了单一的虚粒子更容易从带电的基本粒子被创造和射出,而这对于无质量的光子在没有违反能量跟动量守恒之下是不可能发生的(单一的实粒子要被创造或射出必定是拥有两个以上粒子的系统)。对于那些有真正有质量的粒子,它们的虚态仍然会破坏狭义相对论理的能量动量关系,有质量的粒子基本上都会利用以下的关系来预测:

通常力的载子都是无质量的,主要的例外就是弱作用力中的W+/W-和Z玻色子。

虚粒子的概念很接近量子波动的想法。虚粒子可以被想成是进入一种实体的量,就像是电场一般,而这个量是在量子力学所要求的期望值附近扰动。3

参阅廷得耳效应

X射线晶体学

布拉格散射

卢瑟福散射

汤姆孙散射

中子散射(neutron scattering)

小角散射(small-angle scattering)

本词条内容贡献者为:

尚华娟 - 副教授 - 上海财经大学