DNA芯片
DNA芯片,又称DNA微集阵列,因为在微集阵列的制备过程中采用了硅芯片,所以称为DNA芯片或基因芯片。DNA芯片技术起源于核酸分子杂交,于20世纪80年代提出,90年代初期迅速发展。
检测原理DNA芯片是指应用大规模集成电路的微阵列技术,在固相支持物如硅、尼龙膜表面,有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点阵器有规律地点样于固相支持物表面,然后将要研究的目的材料中的DNA、RNA或cDNA用同位素或荧光物质标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,利用计算机对每一个探针上的杂交信号作为检测、分析、从而反映所用材料中大量基因的信息。
与PCR技术一样,芯片技术已经开展和将要开展的应用领域非常的广泛。生物芯片的第一个应用领域是检测基因表达。但是将生物分子有序地放在芯片上检测生化标本的策略是具有广泛的应用领域,除了基因表达分析外,杂交为基础的分析已用于基因突变的检测、多态性分析、基因作图、进化研究和其它方面的应用,微阵列分析还可用于检测蛋白质与核酸、小分子物质及与其它蛋白质的结合,但这些领域的应用仍待发展。对基因组DNA进行杂交分析可以检测DNA编码区和非编码区单个碱基改变、却失和插入,DNA杂交分析还可用于对DNA进行定量,这对检测基因拷贝数和染色体的倍性是很重要的。
用于DNA分析的样品可从总基因组DNA或克隆片段中获得,通过酶的催化掺入带荧光的核苷酸,也可通过与荧光标记的引物配对进行PCR扩增获得荧光标记DNA样品,从DNA转录的RNA可用于检测克隆的DNA片段,RNA探针常从克隆的DNA中获得,利用RNA聚合酶掺入带荧光的核苷酸。
对RNA进行杂交分析可以检测样品中的基因是否表达,表达水平如何。在基因表达检测应用中,荧光标记的探针常常是通过反转录酶催化cDNA合成RNA,在这一过程中掺入荧光标记的核苷酸。用于检测基因表达的RNA探针还可通过RNA聚合酶线性扩增克隆的cDNA获得。在cDNA芯片的杂交实验中,杂交温度足以除DNA中的二级结构,完整的单链分子(300-3000nt)的混合物可以提供很强的杂交信号。对寡核苷酸芯片,杂交温度通常较低,强烈的杂交通常需要探针混合物中的分子降为较短的片段(50-100nt),用化学和酶学的方法可以改变核苷酸的大小1。
研究展望生物芯片技术是一项综合性的高新技术,它涉及生物、化学、医学、精密加工、光学、微电子技术,信息等领域,是一个学科交叉性很强的研究项目。虽然生物芯片的研究已有了巨大的发展,但一些相关技术如检测技术的发展制约了生物芯片技术的进一步发展.这是因为随着芯片集成度的提高,所用反应物量的减少,其产生的信号也越来越微弱,因而,对高精度检测器的要求迫在眉睫。此外,微加工技术、芯片的封装和保存等也是在生物芯片的研发中应注重的方面.经过近十多年的不懈努力,生物芯片技术已开始从不成熟逐步走向成熟,并已开始给生命科学研究的许多领域开始带来冲击甚至是革命。2013年1月Nature Genetics出了一期关于微阵列芯片技术的增刊,全面介绍了该技术的发展状况及几个主要应用领域,如重复测序和突变检测、基因表达分析、新药开发、生物信息学、群体遗传学研究等.由此我们可以看出微阵列芯片技术的重要性。对于生物芯片而言,微阵列芯片才只是其中一种检测芯片,与其并级的还有其他多种具有不同功能的芯片.单是其中一种技术就有如此重大的影响力,对生物芯片技术来说,它所能带来的重大意义和深远影响将是不可估量的。从样品的制备、化学反应到检测这三部分的分部集成已实现,全集成已初见端倪.到21世纪生物芯片市场的销售将达百亿美元以上,所以世界各国的公司、研究机构都在积极地进行研究、申请专利、开发新产品,争取早日登陆市场。较早涉足该领域的以美国为首的英、加、荷、德、日等几个国家已经取得了令人眩目的成就。面对这样的情况,我国应及早投入一定的财力、人力和物力,争取在该领域中占有一席之地,避免出现在很多高技术产业中那样技术几乎全被外国人垄断的局面。争取在基因和蛋白质表达芯片,微缩芯片实验室和超高通量药物筛选等方面有自己独到的创新和作为2。