版权归原作者所有,如有侵权,请联系我们

[科普中国]-硅氮烷聚合物

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

硅氮烷聚合物是一类以Si—N为主链的无机聚合物,由于其化学结构的特殊性,在高温条件下可转化为 SiCN,SiCNO 或者二氧化硅陶瓷。因而硅氮烷聚合物在耐高温涂层方面具有重要应用价值。

简介聚硅氮烷是一类主链以Si—N键为重复单元的无机聚合物。自1921年A. Stock等人首次报道采用氨气氨解氯硅烷制备聚硅氮烷以来1,研究者对聚硅氮烷的研究已持续了近一个世纪。相比其类似聚合物—主链以Si—O链为重复单元的聚硅氧烷,聚硅氮烷的开发和应用逊色很多。其主要原因有两个: 一是大部分聚硅氮烷相对活泼,与水、极性化合物、氧等具有较高的反应活性,因此保存和运输较困难; 二是聚硅氮烷的制备方法尚不完善,并不能有效地对反应产物进行控制,反应产物复杂,摩尔质量偏低。

尽管如此,经过近一个世纪的发展,已开发出商业化聚硅氮烷产品,如瑞士Clariant、日本Teon、英国AZ Electronic materials的全氢聚硅氮烷;美国KiON牌号为“ceraset”的聚脲硅氮烷、聚硅氮烷;另外,美国Dow Corning公司、德国Bayer也有部分聚硅氮烷的产品;在国内,中国科学院化学研究所2开发出PSN系列聚硅氮烷。聚硅氮烷的成功商品化推动了其在各方面的应用研究,其中作为陶瓷前驱体的研究最为丰富。

硅氮烷聚合物的发展历程纵观聚硅氮烷的发展历程,可以将其归纳为4个阶段(图1):

(1)首先是20世纪20年代,研究者开始尝试合成硅氮烷环体和低聚物,并对其进行分类,在这方面 A.Stock 做出了开创性的工作,但这段时期聚硅氮烷发展缓慢。

(2)二战的爆发促使聚硅氧烷在50~60年代成功商业化,这大大激起了研究者对聚硅氧烷类似聚合物—聚硅氮烷的研究热情,这段时期研究者主要是采用类似制备聚硅氧烷的方法,如开环聚合来制备聚硅氮烷,并研究其主要性质,期望能够以聚合物的形式应用,但取得的进展极为有限。

(3)1976年,S. Yajima等成功地通过裂解聚硅烷得到 SiC 纤维,商品名为 Nicalon 的 SiC 纤维并得以应用。研究者将目光投向聚硅氮烷,期望通过设计合适分子结构的聚硅氮烷来制备Si3N4和Si-C-N纤维。因此研究者在这段时间,将研究重心主要放在了聚硅氮烷可纺性以及如何固化裂解之上。自此,聚硅氮烷作为陶瓷前驱体聚合物成为研究者的研究热点,聚合物前驱体法也成为了一种新型陶瓷制备方法。简而言之,即是通过在一定气氛下高温(一般在 1 000 ℃以上)裂解具有特定分子组成的聚合物来制备陶瓷产物的方法。

(4)20世纪90年代,R. Reidel研究小组通过向聚硅氮烷中引入 B 元素制得 Si-B-C-N 陶瓷,其耐温性达到2 200 ℃,这带动了研究者将目光投向改性聚硅氮烷,以制备功能型或者具有更高耐温性的 Si-C-N 陶瓷。随之,具有磁性的 Si-Fe-C-N 陶瓷、具有抗菌性能的Si-Ag-C-N陶瓷、具有良好抗结晶性能的Si-Zr-C-N陶瓷等相继通过改性聚硅氮烷而制备出来。

一直以来,聚硅氮烷主要用于 Si3N4或者 Si-C-N 陶瓷前驱体,因此大多数工作都集中在利用其高温热解转化形成陶瓷材料这一特点而拓展其应用,目前已扩展到了涂层、粘结剂、陶瓷基复合材料、陶瓷薄膜、微电子机械系统(MEMS)以及多孔陶瓷等领域。

关于硅氮烷聚合物的研究聚硅氮烷作为陶瓷前驱体通过裂解聚合物得到陶瓷材料的方法相比传统的无机粉末烧结法具有独特的优势,如:可利用聚合物的成型方式制备陶瓷材料,工艺性好;通过聚合物分子设计能得到化学组成和结构不同的陶瓷材料。

(1)用于制备陶瓷纤维

20世纪年代,聚合物前驱体制备SiC纤维的兴起激起研究者通过聚硅氮烷制备Si3N4、Si3N4/ SiC或SiCN纤维的兴趣。目前,研究者已对聚硅氮烷的可纺性、纺丝工艺、不熔化处理方式、裂解方法等有了较深刻的认识,但之前的研究集中在熔融纺丝上。采用液体聚硅氮烷制备纤维需要聚硅氮烷具有较高的黏度以便于纺丝; 同时黏度又不可随温度变化太快,否则工作窗口太窄。

(2)用于制备块体陶瓷材料

采用聚合物前驱体法制备陶瓷材料具有独特的优势,然而这样得到的陶瓷却不尽完美:一方面,在裂解过程中,部分有机基团脱除,产生气体,使材料内部产生很多孔;另一方面,裂解过程中材料出现收缩,严重时会出现材料开裂、翘曲变形等情况。为此,研究者采用不同的方式,如热压/裂解、液相烧结、预裂解/粘合/裂解、压力浇铸 (pressure casting)等对聚硅氮烷进行固化裂解,从而得到缺陷相对较少的陶瓷材料。热压/裂解法是将聚硅氮烷固化物研磨成固体粉末,然后热压成型,再在惰性气氛中裂解,得到无定型SiCN陶瓷材料。

(3)用于制备陶瓷涂层

对于用有机聚硅氮烷制备陶瓷涂层的研究已取得了很多有意义的结果。F. Kerm3等人设计了一套对碳纤维表面进行涂层处理的中试装置,从纤维的表面处理、浸渍聚硅氮烷溶液、到涂层固化和裂解,可连续进行,实现了10 000 m碳纤维的连续化处理。在此工艺过程中,聚硅氮烷浓度非常重要,太低 (聚硅氮烷质量分数小于2 %)不能实现对纤维的 全面保护,太高(聚硅氮烷质量分数大于10% )则造成涂层碎裂。但聚硅氮烷处理陶瓷、金属表面时要求浓度较高 ( 聚硅氮烷质量分数20% ~ 60 % ),以掩盖基底表面较大的缺陷;在提拉 ( 浸涂)和旋涂工艺中,通常还会采取多次涂覆的方式。

(4)用于制备多孔陶瓷材料

多孔陶瓷在过滤、催化、隔热、吸附等方面具有的广泛应用,聚硅氮烷较多的改性方法和较好的成型能力使其可采取多样的成孔方式制备多孔SiCN陶瓷材料。

(5)用于制备陶瓷MEMS组件

(6)用于制备复合材料

聚硅氮烷作为树脂材料聚硅氮烷本身虽然是一种聚合物树脂,但相比其作为陶瓷前驱体的研究而言,对其作为树脂的研究则较少。在这方面,中科院化学研究所做了一些尝试,包括直接采用聚硅氮烷作为树脂基体,以及用于改性烯丙基酚醛、环氧树脂、硅树脂等,取得了一系列有意义的结果4。

硅氮烷聚合物的应用聚硅氮烷用于碳材料抗氧化碳材料,如石墨、碳纤维,具有密度低、性能高、无蠕变、非氧化环境下耐超高温、耐疲劳性好、比热及导电性介于非金属和金属之间、热膨胀系数小、耐腐蚀性好等特点,是耐高温领域不可或缺的重要材料。但是碳材料的抗氧化性能较差,空气环境下温度达到 400 ℃以上就会出现失重、强度下降的现象。

对于碳纤维增强复合材料,氧化失重率达到2%~5%时,力学性能下降40%~50%,这严重限制其应用。因此,提高碳纤维的抗氧化性能至关重要。德国研究者将聚硅氮烷涂覆于碳纤维丝上,在室温条件下固化形成涂层。通过对纤维在马弗炉中的等温失重考核,发现涂层可有效提高碳纤维的氧化温度,使碳纤维的热稳定温度达到了750 ℃。他们进一步将聚硅氮烷涂覆于碳纤维粗纱上,并在200 ℃左右固化,发现涂层也可有效提高纤维的抗氧化性能和高温稳定性。

聚硅氮烷用于金属高温防护金属的高温防腐抗氧化一直以来是工业界和科研界的重要课题。由聚硅氮烷转化形成的SiO2或者SiCN具有出色的耐腐蚀性能,同时由于其结构中Si-N极性的特点,容易与金属基底结合,因而是良好的耐高温防腐涂层材料。目前已有采用聚硅氮烷为主要原料的商品化耐高温涂层材料,主要用于汽车和卡车等的排气管、活塞、热交换器等。

聚硅氮烷用于高温封孔通过无机烧结或者等离子喷涂方法制备陶瓷部件或者涂层时,材料总是具有一定的孔隙率,这会影响材料的气密性,从而影响其耐高温性能,所以有必要进行封孔处理。常用封孔剂分为有机封孔剂和无机封孔剂2种。有机封孔剂多为有机树脂,只能在低温起到密封作用,高温分解后则失去效果。无机胶粘剂一般是无机粉体和有机胶粘剂配合,其耐温性较有机封孔剂高,但是温度进一步升高,胶粘剂分解后,无机纳米颗粒之间的空隙又会造成封孔效果的下降。M. R. Mucalo等采用聚硅氮烷来涂覆氧化铝片,经高温裂解后在氧化铝表面形成Si3N4/Si2N2O涂层,通过扫描电子显微镜观察发现氧化铝致密度明显提高,且涂覆次数越多,致密度越高。

其他由于聚硅氮烷良好的耐温性,当添加适当填料时,即可达到高温隔热的效果。如在聚硅氮烷中添加中空玻璃微珠,用喷涂的方式涂覆于复合材料表面,经200 ℃固化后,即可对复合材料起到良好的高温保护作用5。

本词条内容贡献者为:

蒲富永 - 教授 - 西南大学