简介
数学变换会追求所谓稀疏表示(sparse representation),即如何通过最小数量的系数尽可能更多的描述信号的能量。不同类型的信号,其在不同变换下系数的分布会不同。1
信号自适应稀疏表示的目的就是在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴含的信息,更方便进一步对信号进行加工处理,如压缩、编码等。信号稀疏表示方向的研究热点主要集中在稀疏分解算法、超完备原子字典、和稀疏表示的应用等方面。
在稀疏表示理论未提出前,正交字典和双正交字典因为其数学模型简单而被广泛的应用,然而他们有一个明显的缺点就是自适应能力差,不能灵活全面地表示信号,1993年,Mallat基于小波分析提出了信号可以用一个超完备字典进行表示,从而开启了稀疏表示的先河,经研究发现,信号经稀疏表示后,越稀疏则信号重建后的精度就越高,而且稀疏表示可以根据信号的自身特点自适应的选择合适的超完备字典。对信号稀疏表示的目的就是寻找一个自适应字典使得信号的表达最稀疏。
稀疏分解算法首先是由Mallat提出的,也就是众所周知的匹配追踪算法(Matching Pursuit,MP)算法,该算法是一个迭代算法,简单且易于实现,因此得到了广泛的应用。随后,Pati等人基于MP算法,提出了正交匹配追踪算法(Orthogonal Matching Pursuit,OMP),OMP算法相较于MP算法,收敛速度更快。在以后的研究中,为了改进OMP算法,学者也提出了各种不同的其它算法,例如:压缩采样匹配追踪(Conpressive Sampling Matching Pursuit,CoSaMP)算法、正则化正交匹配追踪(Regularized Orthogonal Matching Pursuit,ROMP)算法、分段式正交匹配追踪(Stagewise OMP,StOMP)算法、子空间追踪(Subspace Pursuit,SP)算法等等。
信号稀疏表示的两大主要任务就是字典的生成和信号的稀疏分解,对于字典的选择,一般有分析字典和学习字典两大类。常用的分析字典有小波字典、超完备DCT字典和曲波字典等,用分析字典进行信号的稀疏表示时,虽然简单易实现,但信号的表达形式单一且不具备自适应性;反之,学习字典的自适应能力强,能够更好的适应不同的图像数据,在目前的研究中,常用的学习字典的方法包括:Engan于1999年提出的最优方向(Method Of Optimal Directions,MOD)算法,该算法是学习字典的鼻祖,它的字典更新方式简单,但与此同时,它的收敛速度很慢,在该算法的基础上,一些研究人员同时还提出了一些其它的字典学习算法,如FOCUSS字典学习算法,广义PCA(Generalized PCA)算法等等,Micheal Elad也于2006年提出了基于超完备字典稀疏分解的K-SVD算法,该算法相较于MOD算法,收敛速度有了很大的提高,但是随着噪声的逐渐加大,使用该算法进行去噪后的图像因纹理细节的丢失会产生模糊的效果。Mairal于2010年提出了一种online字典学习算法,该算法速度较快且适用于一些特殊的信号处理,例如视频信号,语音信号等等[2]。
信号自适应稀疏表示稀疏表示模型现有稀疏表示模型一般形式如下:
X=argmin||y-Dx||k+λ||x||
其中,y 为观测数据, D 为字典, x 为待估稀疏向量, λ 为正则参数, k (1≤ k