简介:
平面对数螺旋天线是一种角度天线,双臂用金属片制成,具有对称性,每一臂都有两条边缘线,均为等角螺旋线。其极坐标方程为:
为螺旋线矢径; 为极坐标中的旋转角;r0为φ=0°时的起始半径;1/a 为螺旋率,决定螺旋线张开的快慢。其极坐标方程又可写为:
因此称为平面对数螺旋天线。1
由于螺旋线与矢径之间的夹角Ψ 处处相等,因此这种螺旋线称为等角螺旋线,Ψ 称为螺旋角,它只与螺旋率有关,即:
天线结构特征
在图所示的等角螺旋天线中,两个臂的四条边缘具有相同的a,若一条边缘线为 ,则只要将该边缘旋转δ角,就可得该臂的另一边缘线 。另一臂相当于该臂旋转180°而构成,即 , 。
由于平面等角螺旋天线臂的边缘仅由角度描述,因而满足非频变天线对形状的要求。如果取δ=π/2,天线的金属臂与两臂之间的空气缝隙是同一形状,称为自补结构。
工作原理
1.由于平面对数螺旋天线臂的边缘仅由角度描述,因而满足非频变天线对形状的要求。2.当两臂的始端馈电时,可以把两臂等角螺旋线看成是一对变形的传输线,臂上电流沿线边传输,边辐射,边衰减。螺旋线上的每一小段都是一基本辐射片,它们的取向沿螺旋线而变化,总的辐射场就是这些元辐射场的叠加。实验表明,臂上电流在流过约一个波长后就迅速衰减到20dB以下,终端效应很弱。
3.辐射场主要是由结构中周长约为一个波长以内的部分产生的,这个部分通常称为有效辐射区,传输行波电流。换句话说螺旋天线存在“电流截断效应”,超过截断点的螺旋线部分对辐射没有重大贡献,在几何上截去它们将不会对保留部分的电性能造成显著影响,因而,可以用有限尺寸的等角螺旋天线在相应的宽频带内实现近似的非频变特性。波长改变后,有效区的几何大小将随波长成比例地变化,从而可以在一定的带宽内得到近似的与频率无关的特性。
平面对数螺旋天线的电性能
1方向性
自补平面等角螺旋天线的辐射是双向的,最大辐射方向在平面两侧的法线方向上。若设θ为天线平面的法线与射线之间的夹角,则方向图可近似表示为cosθ,半功率波瓣宽度似为90°。
2. 阻抗特性
如前所述,当δ=π/2时天线为自补结构,自补是互补的特殊情况。互补天线类似于摄影中的像片和底片,互补天线的一个例子是金属带做成的对称振子和无限大金属平面上的缝隙,互补天线的阻抗具有下列性质
对于自补结构,由上式可得
3.极化特性
一般而言,平面等角螺旋天线在θ≤70°锥形范围内接近圆极化。天线有效辐射区内的每一段螺旋线都是基本辐射单元,但它们的取向沿螺旋线变化,总的辐射场是这些单元辐射场的叠加,因此等角螺旋天线轴向辐射场的极化与臂长相关。当频率很低,全臂长比波长小得多时,为线极化;当频率增高时,最终会变成圆极化。在许多实用情况下,轴比小于等于2的典型值发生在全臂长约为一个波长时。极化旋向与螺旋线绕向有关,例如,图2所示平面等角螺旋天线沿纸面对外的方向辐射右旋圆极化波,沿相反方向辐射左旋圆极化波。
4. 工作带宽
等角螺旋天线的工作带宽受其几何尺寸影响,由内径r0和最外缘的半径R决定。实际的圆极化等角螺旋天线,外径R≈λmax/4,内径r0≈(1/4~1/8)λmin。根据臂长为1.5圈~3圈的实验结果看,当a=0.221对应1.5圈螺旋时,其方向图最佳。此时外半径 R=r0e0.221(3π)=8.03r0=λmax/4,在馈电点r=r0e0=r0=λmin/4,所以该天线可具有的相对带宽为
即典型相对带宽为8∶1。若要增加相对带宽,必须增加螺旋线的圈数或改变其参数,相对带宽有可能达到20∶1。