简介
用图样分析一般利用数学模型并结合图像处理的技术来分析底层特征和上层结构,从而提取具有一定智能性的信息。1
模式识别和人工智能方法对物景进行分析、描述、分类和解释的技术,又称景物分析或图像理解。20世纪60年代以来,在图像分析方面已有许多研究成果,从针对具体问题和应用的图样分析技术逐渐向建立一般理论的方向发展。图样分析同图像处理、计算机图形学等研究内容密切相关,而且相互交叉重叠。但图像处理主要研究图像传输、存储、增强和复原;计算机图形学主要研究点、线、面和体的表示方法以及视觉信息的显示方法;图像分析则着重于构造图像的描述方法,更多地是用符号表示各种图像,而不是对图像本身进行运算,并利用各种有关知识进行推理。图像分析与关于人的视觉的研究也有密切关系,对人的视觉机制中的某些可辨认模块的研究可促进计算机视觉能力的提高(见机器视觉)。2
比较图样分析(image analysis)和图像处理(image processing)关系密切,两者有一定程度的交叉,但是又有所不同。图像处理侧重于信号处理方面的研究,比如图像对比度的调节、图像编码、去噪以及各种滤波的研究。但是图像分析更侧重点在于研究图像的内容,包括但不局限于使用图像处理的各种技术,它更倾向于对图像内容的分析、解释和识别。因而,图像分析和计算机科学领域中的模式识别、计算机视觉关系更密切一些。
图样分析一般利用数学模型并结合图像处理的技术来分析底层特征和上层结构,从而提取具有一定智能性的信息。
分析过程如图为一个分级的图像分析过程的
图像分析基本上有四个过程。
①传感器输入:把实际物景转换为适合计算机处理的表达形式,对于三维物景也是把它转换成二维平面图像进行处理和分析(见图像表示)。
②分割:从物景图像中分解出物体和它的组成部分(见图像分割)。组成部分又由图像基元构成。把物景分解成这样一种分级构造,需要应用关于物景中对象的知识。一般可以把分割看成是一个决策过程,它的算法可分为像点技术和区域技术两类。像点技术是用阈值方法对各个像点进行分类,例如通过像点灰度和阈值的比较求出文字图像中的笔划。区域技术是利用纹理、局部地区灰度对比度等特征检出边界、线条、区域等,并用区域生长、合并、分解等技术求出图像的各个组成成分。此外,为了进一步考察图像整体在分割中的作用,还研究出松弛技术等方法。
③识别:对图像中分割出来的物体给以相应的名称,如自然物景中的道路、桥梁、建筑物或工业自动装配线上的各种机器零件等。一般可以根据形状和灰度信息用决策理论和结构方法进行分类,也可以构造一系列已知物体的图像模型,把要识别的对象与各个图像模型进行匹配和比较。
④解释:用启发式方法或人机交互技术结合识别方法建立物景的分级构造,说明物景中有些什么物体,物体之间存在什么关系。在三维物景的情况下,可以利用物景的各种已知信息和物景中各个对象相互间的制约关系的知识。例如,从二维图像中的灰度阴影、纹理变化、表面轮廓线形状等推断出三维物景的表面走向;也可根据测距资料,或从几个不同角度的二维图像进行景深的计算,得出三维物景的描述和解释。
研究领域图像分析研究的领域一般包括:
基于内容的图像检索(CBIR-Content Based Image Retrieval)
人脸识别(face recognition)
表情识别(emotion recognition)
光学字符识别(OCR-Optical Character Recognition)
手写体识别(handwriting recognition)
医学图像分析(biomedical image analysis)
视频对象提取(video object extraction)
应用针对具体对象的图样分析技术,已经应用在工业、检测、遥感、计算机、军事等技术中。
①工业自动化方面:如机器手抓取物体,自动操纵线焊机和切削刀具,与制造超大规模集成电路有关的工艺如引线焊接、片子对准和封装,对于油井现场或地震资料的大量数据进行监测和筛选,对自动装配和修理提供视觉反馈。
②检测方面:有检查印刷电路板上的尖角、短路和联接不良,检验铸件中的杂质和裂缝,筛选医学图像和断层图像,常规筛选工厂产品。
③遥感方面:有制图学、交通监控、资源管理、矿物勘探。
④计算机应用方面:有信息系统管理,文件阅读机,建筑和机械工程的计算机辅助设计。
⑤军事方面:有跟踪运动物体、自动导航、目标搜索和测距等。
发展趋势虽然图样分析的研究已经取得不少成果,并在许多领域的具体对象上得到实际应用,但是在建立共同的理论基础方面还存在很多问题,有待进一步解决。例如图像的精确表示形式,在不同分辨率水平上表示表面信息,建立表示的分级构造,利用和确定表面颜色和状态信息,对运动状态的感知过程,从光学流中获取信息的方法,在视觉感知中应用有关专门信息的方法等。