版权归原作者所有,如有侵权,请联系我们

[科普中国]-极化误差

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏
简介

在通信对抗测向试验中,根据配试装备所发射的无线电波在被试装备的接收天线端所感应的无线电信号强度分析而判定配试装备的方位如果从配试装备到被试装备之间的无线电波的传播没有受到其他外来因素的影响,那么所测得的方位值应该是比较准确的但实际工作中的情况并非是理想的,无线电波在传播过程中由于受到诸如电离层的分布状况、地磁场、空间电磁波干扰等因素的影响,从而产生测向误差。

通常的中波、短波测向中,到达测向天线体系处的电磁波,除了正常极化的地波外,还有来自电离层的反射波(天波)天波往往是非正常极化波他既有垂直极化分量,又有水平极化分量这种非正常极化波的电场(磁场)的各个分量的振幅和相位关系也是随时变化的。

在长、中、短波测向中,大多数以接收垂直极化波的天线体系来测向这种测向机对于具有任意极化角和波前倾角的无线电波进行测向时,会同时对垂直极化波和水平极化波产生接收由于所用的天线体系对垂直分量和水平分量接收的方向特性图是不相同的,因此其合成方向特性图会发生畸变,从而产生测向误差这种误差称为极化误差。

极化误差与测向机和被测目标台之间的距离有关。当距离近时,地波占优势,极化误差很小。随着距离的增加,天波的比重增加,地波逐渐减小,极化误差也随之增加。待到地波已全部衰减,而仅靠天波来测向时,由于在这个区间反射波是很陡地入射,形成一个测向不稳定的区域在该区域就不能满意地进行测向。当距离继续增大时,天波的波前倾角随之下降,极化误差亦开始减小,测向准确度也随之提高。

对干涉仪测角性能的影响

当前,通信、雷达、无线网络等各种新型电子信息系统不断涌现,使得电磁环境变得日益复杂,这对电子信号的情报侦察能力的要求也越来越高。传统接收机体制已不能满足高密度复杂电磁环境的要求。自适应信号处理由于能够自适应的调整和外界干扰环境的信号参数,可以在保持期望信号的前提下抑制干扰信号,从而在雷达、通信及声纳等领域中得到广泛的应用。然而,自适应信号处理所要求的各个单元是理想的,并且各个接收机之间不存在误差,这在实际的系统中是几乎不可能实现的,必然会存在着各种非理想特性。例如,实际阵列天线的各个单元往往存在非理想特性,在发射或接收电磁信号时,不仅能够接收信号的共极化分量,也能够接收信号的交叉极化分量,存在着一定的正交极化耦合度。在以往比相体制测角性能的研究中,往往侧重分析各个接收通道之间幅度和相位的一致性问题,而天线单元本身的交叉极化耦合问题往往被忽略而未加考虑,这使得工业实际部门在对比相体制测角系统进行鉴定和测试遇到问题,有很多试验现象难以解释。63892部队的戴幻尧等从一个新的视角,即从干涉仪天线的极化误差重新入手重新审视测角性能,首先给出了比相法测角的基本原理,然后对天线单元的接收信号进行数学建模,进而研究和分析了天线单元的极化误差对比相体制测角性能的影响,给出了解析的数学表达式,指出了在极化误差的作用下,干涉仪的测角性能敏感于入射信号的极化状态,最后通过仿真定性定量评估了测角性能,给出了部分实验结论。当相位干涉仪的两个天线单元( 或者多个天线单元) 的极化特性不一致时,会引起较大的角度测量误差,并且该误差和入射信号的极化状态有关。因此,在实际系统鉴定中,不应该只用一种极化的信号源对比相测角系统进行测试,应该多改变信号的极化方式,进而更加全面的干涉仪测角性能,该误差难以有效校准,下一步需要研究有效的误差校准方法。1

减小极化误差的措施

在无线电测向中,减小极化误差有多种措施,下而主要对常用的几种加以讨论

多次测向取平均值法

间隔垂直天线的无线电测向机的极化误差的特点是变化较快,对称地出现于正确示向度的两侧,所以对多次连续取得的示向度数值来说,也可以把极化误差看作是随机性的。

根据概率的计算,大量观测中,绝对值相等、符号相反的随机误差出现的概率几乎是相同的因而随着测向次数的增加,其算术平均误差逐渐趋近于零因此降低极化误差的有效方法之一是长时间连续测量出多个示向度的数值,然后取其平均值如果把几次测量的算术平均值看作是方位误差,那么所得到的算术平均极化误差要比根据单个方位得到的均方根极化误差小 倍。

因此,长时间多次测向,取平均值,可以大大地降低极化误差。

选择抗极化误差的无线电测向体制

为了较好地减小极化误差,通常采用各种抗极化误差的测向体制,主要有采用间隔双环天线体系构成的无线电测向机,采用H型天线体系构成的测角系统,采用U型天线体系,采用变压器祸合的阿德柯克天线体系以及各种方式的综合应用等。由于阿德柯克天线体系应用比较广泛,以此种测向体制为例做以技术分析。

阿德柯克天线体系是为了使两根水平馈线容易实现其负载平衡、对称而采用变压器祸合的天线体系其典型电原理图如图所示。

采用磁祸合的优点是可以增大天线体系下半部闭合回路的阻抗,从而可以避免由于上、下两部分回路不平衡而引起的极化误差在这种情况下,变压器的匝间电容愈小愈好因为该电容愈小,馈线愈容易保持平衡,接收的水平极化分量愈易抵消因而引起的极化误差也愈小。

图中变量器偏离垂直天线的中心,其目的是为了减少垂直、水平、导线间的静电祸合在这种祸合方法中,对极化误差影响最大的是通过变压器初、次级线圈间的杂散电容C,而流入天线下半部闭合回路的电流因此,为了减小该杂散电容C的有害影响,可以把初、次级线圈屏蔽起来。

如果变压器制造的的完全平衡,馈线也制作成完全平衡对称,那么采用变压器祸合的天线体系,理论上可以做到极化误差为零但是实际上,由于制造工艺不可能达到这种要求,因此总有一些不平衡存在,因此这种电路只能起到降低极化误差的作用.

这种型式的结构优点是可以降低极化误差,其缺点是制作困难,如:整个变压器的设计制造均应完全一致,祸合系数及其他一切参数均应对应相等,否则,将会产生阻抗不相等或电流相位不一致等误差。在电气上要求这个祸合系数愈大愈好,以便有较高的灵敏度,而且在各波段中不应有谐振点,所以对其电感量的选择应特别注意。

由于性能良好的高频磁芯以及传输线式变量器的出现,可以在很宽的频带范围内,以很低的损耗使天线至接收机间由不平衡传输为平衡传输,因此大大降低了极化误差,所以这种变压器祸合方式应用比较广泛。2