对于核电站卸出的乏燃料管理策略,当前世界上主要有三种做法:一是进行后处理,收铀、钚重新制成燃料元件再利用,高放废物固化后进行深地质层处置或进行分离嬗变;二是一次通过,即乏燃料经过冷却、包装后作为废物送入深地质层直接处置;三是将乏燃料进行暂时贮存(50年),以后再作决策2。
离堆贮存地点选择根据我国核燃料后处理发展的现状,要离堆贮存核电站乏燃料组件,除核电现场厂址可建设离堆贮存设施外,中试厂(我国第一座动力堆乏燃料后处理中间试验工厂)乏燃料贮存水池扩建工程是唯一的选择2。
使用中试厂进行离堆贮存,需要对贮存水池设施从乏燃料的接收、卸料与贮存等全过程进行技术分析,还需要对水池冷却能力、净化能力、临界安全、辐射防护安全与结构承载能力等进行计算和校核2。
离堆贮存方案选择乏燃料的离堆贮存技术主要分为干法贮存和湿式贮存。湿法贮存将乏燃料贮存在大的贮存水池中,靠池水来对乏燃料进行冷却。干法贮存将乏燃料贮存在空气或惰性气体氛围中,靠气体对流来对乏燃料进行冷却2。
湿式贮存中试厂乏燃料离堆湿法贮存的乏燃料贮存厂房内设有2个乏燃料贮存水池,每个乏燃料贮存水池设有9*10乏燃料贮存格架12台。贮存水池内使用除盐水冷却乏燃料。乏燃料水池冷却以海水为最终热阱,按照三回路设计,包括乏燃料水池冷却系统,设备冷却水系统,重要厂用水系统等。厂房总体布置分为乏燃料贮存区、乏燃料装卸区、辅助系统区、人员工作区2。
干法贮存在过去的几十年,燃料的干法贮存技术发展很快。对于压水堆乏燃料干法贮存比较常见的分类方法是分成贮存室贮存、金属容器贮存、混凝土容器贮存4。
**金属容器贮存:**金属容器最初主要用于乏燃料的运输,依靠厚壁金属来屏蔽乏燃料的辐射。可以用于乏燃料贮存的金属容器设计可分三类,第一类是容器专为贮存目的设计的;第二类,容器是运输和贮存兼用的;第三类,容器是运输、贮存和最终处置三用的2。
由于金属容器的造价比较昂贵(容量为19组乏燃料组件的金属贮存容器,单台造价约为2500万),为了降低干法贮存的费用,开发了混凝土容器贮存技术,使用混凝土来取代厚壁的金属屏蔽层,而大大降低了贮存费用。
**混凝土容器贮存:**混凝土容器贮存技术主要以NUHOMS和 HI-STORM贮存技术为典型代表。NUHOMS系统在混凝土水平贮存模块(HSM)中水平地干式贮存封装的乏燃料组件。NUHOMS系统利用转运设备将干式屏蔽罐从核电站燃料/反应堆厂房运到水平贮存模块贮存。转运系统包括转运容器、容器吊具、液压缸系统、牵引车、转运拖车、容器支撑滑架和滑架定位系统等。NUHOMS系统的辅助设备有转运容器/DSC环形密封圈、真空干NUHOMS系统通过热传导、辐射和自然对流将衰变热从乏燃料组件扩散到干式屏蔽罐(DSC),再从 DSC扩散到周围空气,最终扩散到环境中。
HI-STORM系统为垂直存放乏燃料的混凝土容器贮存系统。HI-STORM系统主要包括三部分:多功能吊篮(MPC)、贮存容器(HI-STORM)和转运容器(HI-TRAC)。MPC用于维持燃料组件的结构,并且构成乏燃料的包容边界。贮存容器为 MPC长期贮存过程中提供结构保护和辐射屏蔽。此外,转运容器为 MPC装料、卸料和转运过程提供结构保护和辐射屏蔽2。
**贮存室贮存:**贮存室贮存(VAULT)是由巨大的混凝土墙组成的贮存室,室内贮存乏燃料。贮存室本身很简单,其燃料接收和预处理装置,相对说来比较复杂。冷却系统分两类:即闭合回路和开式回路。对于闭合回路系统,通过人工或自然的对流使气流经燃料或燃料容器,然后通过热交换回流。开式回路系统包括一个诱发自然对流空气一次通过燃料容器外表面的排风烟囱,热能通过辐射、对流和传导从燃料流向容器壁2。
贮存方案比较与压水堆乏燃料湿法贮存技术相比,干法贮存技术具有如下几方面的优点:1)在使用惰性气体作冷却剂时,可以很好的保护燃料和包壳;2)转运和贮存过程产生较低的辐射剂量,特别是在运行期间;3)运行和维修费用较低,采用自然对流冷却时,不需要鼓风机和电力供应;4)对抗事故的能力大大增加,特别是抵抗失水事故方面的能力显著提高,安全可靠性更高;5)易于退役;6)运行期间几乎不会产生放射性废物。符合废物最小化的理念要求。总之,与压水堆乏燃料湿法贮存技术相比,干法贮存技术具有模块化贮存、运行费用低、放射性废物产生少、抵抗事故能力更强等优点。近二十年以来,国外新建的压水堆乏燃料离堆贮存设施大部分采用干法贮存技术4。