背景
爆震,是燃气预混合燃烧型发动机特有的工作状态,也是限制汽油机提高其各项性能的难点之一,主要表现在燃气预混合燃烧发动机的压缩比不能过大,导致压缩效率降低。爆震产生时,发动机缸内压力在紊乱震荡中急剧上升,会激发出频率高、幅度大的压力波甚至是冲击波,从而冲击发动机零部件,产生各种机体噪声;发动机也会剧烈振动,破坏传热流体热边界层,使得散热损失加大,冷却水温度显著提高,气缸盖等零部件温度超标等,同时排气管温度会下降;爆震强度处于爆震阀值边缘时可以提高发动机热效率,但发动机爆震强度过大时,其功率会迅速下降,甚至是毁坏发动机1。
爆震的发生与发动机的不合理设计参数以及运行工况密切相关。主要表现在燃烧室、火花塞、进气道等设计布置上。紧凑的燃烧室以及双火花塞等可以减小火焰传播距离,避免过热爆震;合理的进气道可以增强气流湍动能从而加强火焰传播速度;同时低速的运行工况也会使得进气湍动能减小而降低火焰传播速度,而大负荷的运行工况会使得汽缸温度过高而使燃气自燃,混合气过稀也会使得燃气温度升高而产生爆震现象等。
开展发动机爆震试验,对其在各运行工况下的缸内压力、振动等信号进行研究,确定爆震发生的时刻及强度,异或未发生爆震工况的爆震安全裕度,从而保证发动机的安全运行。此外还可以依据实验结果,分析燃烧情况、优化发动机运行参数,减小爆震安全裕度,使发动机高效运行。航空发动机出厂前要进行爆震试验,以确定机型各工况燃烧运行状况,通过适航要求,确保发动机空中运行安全。
过程(1)在发动机进气口前安装进气定温加热装置,用于控制进气温度,达到美国咨询通报 AC33.47-1 中的标准。
(2)在发动机起动齿轮盘处安装上止点信号传感器。
(3)根据缸压测量顺序将压力传感器安装在气缸头安装座上。
(4)数据采集软件、数据采集卡、电荷放大器等仪器设备安装与调试。
发动机暖机过程中开启进气定温加热装置,设定目标温度为 39.8℃;系统稳定后,发动机进气温度将控制在 39.4℃~40.5℃之间,保证进气温度不低于爆震试验标准温度 39.4℃(美国咨询通报标准 AC33.47-1 中的标准),以模拟标准热天时的进气温度。
爆震的抑制增压直喷汽油机的压缩比一般小于10,而在实际产品开发中,通过传统的推迟点火角、加浓混合气、EGR等措施抗爆震似乎已经达到了极限。且增压汽油机除了常规爆震外,在低速高负荷区域还容易出现超级爆震(pre-ignition)现象,采用常规抗爆震措施很难抑制2。
近年来研究表明:缸内直喷汽油机(GDI)通过增压配合VVT控制扫气具有抑制爆震的潜力。常规汽油机在高负荷下主要通过推迟点火角并加浓混合气来抑制爆震,这会显著恶化燃油经济性,并且产生较高的HC和CO排放。在当量比的条件下增压GDI发动机试验结果表明:扫气可以降低缸内温度,减小燃烧室热负荷,降低涡轮前端温度。且扫气将缸内残余废气压入排气岐管,可改善涡轮增压器的工作效率,使得进气量增加,提高发动机的低速扭矩。但当量比条件下、压缩比较高时,难以采用大节气门开度实现较好的扫气效果,而且这时排气温度过高,容易使催化剂超温。而在稀燃的条件下,缸内燃烧温度低,氮氧化物排放有所降低,而混合气的自燃温度高,发动机的爆震倾向小。再通过匹配较高增压保证功率密度,可以达到较高的负荷。同时,采用高的进气压力和进气流量,对扫气更有利。