版权归原作者所有,如有侵权,请联系我们

[科普中国]-弗洛伊德最短距离算法

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

简介

最短路问题是网络最优化中一个基本而又非常重要的问题,这一问题相对比较简单,在实际生产和生活中经常遇到,许多的网络最优化问题可以化为最短路问题,或者用最短路算法作为其子程序.因此,最短路的用途已远远超出其表面意义迄今为止,所有最短路算法都只对不含负回路的网络有效,实际上对含有负回路的网络,其最短路问题是NP困难的,因此本研究所讨论的网络也不含负回路.此外,如果将无向图每条边用两条端点相同、方向相反的弧来代替,可以将其化为有向图,因而不讨论无向图.本研究中未述及的术语、记号可参见文献1。

Floyd算法是一种用于寻找给定加权图中顶点间最短路径的算法,以1978年图灵奖获得者斯坦福大学计算机科学系教授RobertW.Floyd命名。Floyd算法采用动态规划的原理计算两两顶点间最短路径[3],主要解决网络路由寻找最优路径的问题2。

算法思想路径矩阵通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。

从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

采用松弛技术(松弛操作),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

状态转移方程其状态转移方程如下:

map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};

map[i,j]表示i到j的最短距离,K是穷举i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。

当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

算法过程1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

复杂度时间复杂度:O(n^3)

空间复杂度:O(n^2)

算法实现C语言#include#include#define max 1000000000 int d[1000][1000],path[1000][1000];int main(){ int i,j,k,m,n; int x,y,z; scanf("%d%d",&n,&m); for(i=1;i