聚值集(cluster set)是区域内点列趋于一边界点时相应的函数值的极限值。函数的极值只是在一点的邻域这样一个很小范围内的最大值和最小值,所以它是局部性的。
概念聚值集(cluster set)是区域内点列趋于一边界点时相应的函数值的极限值。设D是复平面上任一区域,Γ是它的边界,w=f(z)是定义于D内的单值亚纯函数,这时对于Γ的每个点z0,可在复平面上定义与映射w=f(z)相联系的如下点集:如果存在点列{zn},使得当zn∈D,zn→z0时,f(zn)→α,则α称为f(z)在z0处的一个聚值。它的全体记为CD(f,z0),称为f在z0处的聚值集。1
复平面复数平面即是z=a+bi ,它对应的坐标为(a,b) .其中,a表示的是复平面内的横坐标,b表示的是复平面内的纵坐标,表示实数a的点都在x轴上,所以x轴又称为“实轴”;表示纯虚数b的点都在y轴上,所以y轴又称为“虚轴”。y轴上有且仅有一个实点即为原点"0"。
数学中,复数平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。
复数平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。
复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。
亚纯函数除极点外为全纯的函数为亚纯函数,它是复变函数论研究的主要对象之一。
德国数学家外尔斯特拉斯、瑞典数学家米塔-列夫勒、法国数学家柯西等都是亚纯函数理论的奠基人。1876年,外尔斯特拉斯证明了一个亚纯函数可以表示为两个整函数的商。第二年,瑞典数学家米塔-列夫勒推广了外尔斯特拉斯的结果,证明在任意一个区域上的亚纯函数皆可表示为两个函数的商,其中每一个都在该区域内解析。法国数学家柯西也曾给出一种分解方法,对相当广的一类亚纯函数得到简单的表示式。
近代亚纯函数理论是20世纪20年代由芬兰数学家奈望林纳所创立。他在1925年发表了亚纯函数的一个一般性理论,这个理论中有两个基本定理分别被称为第一基本定理和第二基本定理,从它们可以推出一系列关于亚纯函数的值分布的结果,丰富并推进了前人的工作,产生了深远影响。
亚纯函数的术语是由法国数学家布里奥和布凯共同引进的。2
全纯函数全纯函数即为解析函数。是指能局部展成幂级数的函数,它是复变函数论研究的主要对象。解析函数类包括了数学及其在自然科学和技术应用中所遇到的大多数函数,这类函数关于算术、代数和分析的各种基本运算是封闭的,解析函数在其自然存在的域中代表唯一的一个函数,因此,对解析函数的研究具有特殊的重要性。
对解析函数的系统研究开始于18世纪。欧拉在这方面做出许多贡献。拉格朗日最早希望建立系统的解析函数理论,他曾试图利用幂级数的工具来发展这种理论,但未获成功。
法国数学家柯西以他自己的工作被公认为是解析函数理论的奠基者。1814年他定义正则函数为导数存在且连续,他批判了过去许多错误的结果,创立了若干法则,以保证级数运算的可靠性。1825年他得到了著名的柯西积分定理,随后又建立了柯西积分公式。柯西利用这些工具得到了正则函数在它的定义域内处处可表为收敛的幂级数的结果,其逆命题亦真。所以解析和正则是等价的。后来黎曼对柯西的工作做出了重要的发展。1900年,法国数学家古尔萨改善了正则函数的定义,只要求函数在定义域中处处有导数。
外尔斯特拉斯以幂级数为出发点开展对解析函数的研究。他定义正则函数为可以展开为幂级数的函数,创立了解析开拓理论,并利用解析开拓定义完全解析函数。柯西的方法限于研究完全解析函数的所谓单值分支,必须通过解析开拓才能和外尔斯特拉斯的理论统一起来。3
本词条内容贡献者为:
王海侠 - 副教授 - 南京理工大学