版权归原作者所有,如有侵权,请联系我们

[科普中国]-度量线性空间

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

概念

度量线性空间(metric linear space)是一类定义了距离的线性空间。设E是线性空间,又是度量空间,ρ是E上的距离,且E按ρ导出的拓扑成为拓扑线性空间,则称E为度量线性空间、线性度量空间或线性距离空间。如果对一切x,y∈E,ρ(x-y,0)=ρ(x,y),则称ρ是平移不变距离。如果对一切数λ(|λ|≤1),有ρ(λx,0)≤ρ(x,0),就称ρ是均衡的。设ρ是E上均衡平移不变距离,则p(x)=ρ(x,0)是E上的准范数。完备的度量线性空间必可改赋一个均衡平移不变距离,且按这个距离是完备的,从而是弗雷歇空间。1

线性空间线性空间亦称向量空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个域。若:

1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。

2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。

3.加法与纯量乘法满足以下条件:

1) α+β=β+α,对任意α,β∈V.

2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.

3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.

4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.

5) 对P中单位元1,有1α=α(α∈V).

6) 对任意k,l∈P,α∈V有(kl)α=k(lα).

7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.

8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ,

则称V为域P上的一个线性空间,或向量空间。V中元素称为向量,V的零元称为零向量,P称为线性空间的基域.当P是实数域时,V称为实线性空间。当P是复数域时,V称为复线性空间。例如,若V为三维几何空间中全体向量(有向线段)构成的集合,P为实数域R,则V关于向量加法(即平行四边形法则)和数与向量的乘法构成实数域R上的线性空间。又如,若V为数域P上全体m×n矩阵组成的集合Mmn(P),V的加法与纯量乘法分别为矩阵的加法和数与矩阵的乘法,则Mmn(P)是数域P上的线性空间。V中向量就是m×n矩阵。再如,域P上所有n元向量(a1,a2,…,an)构成的集合P对于加法:(a1,a2,…,an)+(b1,b2,…,bn)=(a1+b1,a2+b2,…,an+bn)与纯量乘法:λ(a1,a2,…,an)=(λa1,λa2,…,λan)构成域P上的线性空间,称为域P上n元向量空间。2

度量空间度量空间亦称距离空间。一种拓扑空间,其上的拓扑由距离决定。设R是一个非空集合,ρ(x,y)是R上的二元函数,满足如下条件:

1.ρ(x,y)≥0且ρ(x,y)=0⇔x=y;

2.ρ(x,y)=ρ(y,x);

3.(三角不等式)ρ(x,y)≤ρ(x,z)+ρ(y,z);

则称ρ(x,y)为两点x,y之间的距离,R按距离ρ成为度量空间或距离空间,记为(R,ρ)。设A是R的子集,则A按R中的距离ρ也成为度量空间,称为R的(度量)子空间。如果把上述距离的条件1改为ρ(x,y)≥0且ρ(x,x)=0,则称ρ为R上的拟距离。当ρ(x,y)=0时,记x~y.~是R上的一个等价关系,记商集(即等价类全体)为D=R/~,在D上作二元函数ρ~:ρ~(x~,y~)=ρ(x,y)(x∈x~,y∈y~),则ρ~是D上的距离,而(D,ρ~)称为R按拟距离ρ导出的商(度量)空间。

度量空间(R,ρ)中的子集A称为有界的,如果对x0∈R,存在常数M,使ρ(x0,x)≤M对A中的一切x成立。设x0∈R,r>0,则称集合{x|x∈R,ρ(x,x0)