版权归原作者所有,如有侵权,请联系我们

[科普中国]-博雷尔子群

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

概念介绍

博雷尔子群(Borel subgroup)是代数群的一类可解子群。指代数群G的极大连通可解子群。G的不同博雷尔(Borel,A.)子群在G中互相共轭。例如,当G=GL(n,K)或SL(n,K)时,所有上三角矩阵组成的子群就是一个博雷尔子群。2

群群是一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。

设G为一个非空集合,a、b、c为它的任意元素。如果对G所定义的一种代数运算“·”(称为“乘法”,运算结果称为“乘积”)满足:

(1)封闭性,a·b∈G;

(2)结合律,即(a·b)c = a·(b·c);

(3)对G中任意元素a、b,在G中存在惟一的元素x,y,使得a·x= b,y·a=b,则称G对于所定义的运算“·”构成一个群。例如,所有不等于零的实数,关于通常的乘法构成一个群;时针转动(关于模12加法),构成一个群。

满足交换律的群,称为交换群。

群是数学最重要的概念之一,已渗透到现代数学的所有分支及其他学科中。凡是涉及对称,就存在群。例如,可以用研究图形在变换群下保持不变的性质,来定义各种几何学,即利用变换群对几何学进行分类。可以说,不了解群,就不可能理解现代数学。

1770年,拉格朗日在讨论代数方程根之间的置换时,首先引入群的概念,而它的名称,是伽罗华在1830年首先提出的。3

子群子群是群的特殊的非空子集。群G的非空子集H,若对G的乘法也成为群,则称H为G的子群,记为H≤G。若子群H≠G,则称H为G的真子群,记为HG或简记为H