版权归原作者所有,如有侵权,请联系我们

[科普中国]-数字模拟转换

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

基本上来说,数字模拟转换是与模拟数字转换相对的。在大多数的情况下,如果模拟数字转换器(ADC)被放置在通信电路中DAC的后面,数字信号输出就与输入的数字信号完全相同了。并且,在大多数的情况中,当DAC被放置在ADC的后面,那么输出的模拟信号就与输入的模拟信号完全相同了。

二进制数字脉冲完全依靠它们自己就可以显现出一长串的1和0,这对人类观察者来说并没有明显的意义。但是当DAC被用于对二进制数字信号进行解码,输出的丰富含义就显现出来了。这个输出也许是语音、图片、音乐小调,或者是机械动作。

DAC和ADC在一些处理数字信号的应用程序中非常重要。模拟信号的可理解性或者保真性都可以得到改善,通过使用ADC将模拟的输入信号转换为数字的形式,然后数字信号再经过“清理”,最终的数字脉冲再通过使用DAC重新转换为模拟信号。2

基本原理

数字量是由一位一位的数码构成的,每个数位都代表一定的权。比如,二进制数1001, 最高位的权是23=8,此位上的代码1表示数值1*23=8;最低位的权是20=1,此位上的,代码1表示数值1*20=1;其它数位均为0,因此二进制数1001就等于十进制数9。1

为了把一个数字量变为模拟量,必须把每一位的数码按照权来转换为对应的模拟量,再把各模拟量相加,这样得到的总模拟量便对应于给定的数据。

D/A转换器的主要部件是电阻开关网络,通常是由输入的二进制数的各位控制一些开关,通过电阻网络,在运算放大器的输入端产生与二进制数各位的权成比例的电流,这些电流经过运算放大器相加和转换而成为与二进制数成比例的模拟电压。

D/A转换的原理电路如 图5-1所示,是一个足 够精度的参考电压,运箅放大器输入端的各支路对应待转换数据的第0位、第1位、...、第n-1位。支路中的开关由对应的数位来控制,如果该数位位“1”,则对应的开关闭合;如果该数位为“0”,则对应的开关打开。各输入支路中的电阻分别为R、2R、4R、...这些电阻称为权电阻。它们把数字量转换成电模拟量,即把二进制数字量转换为与其数值成正比的电模拟量。1

性能指标分辨率

分辨率是指D/A转换器能够转换的二进制位数。位数越多,分辨率越高。对一个分辨率为n位的D/A转换器,能够分辨的输入信号为满量程的1/2n。1

例如:8位的D/A转换器,若电压满量程为5V,则能分辨的最小电压为5V/28≈20mV, 10位的D/A转换器,若电压满量程为5V,则能分辨的最小电压为5V/210≈5mV。

转换时间

转换时间是指D/A转换器由数字量输入到转换输出稳定为止所需的时间。转换时间也叫隐定时间或者建立时间。当输出的模拟量为电压时,建立时间较长,主要是输出运算放大器所需的时间。图5-2中所示的ts即为转换时间。

转换精度

转换精度是指D/A转换器的实际输出与理论值之间的误差。转换精度可分为绝对精度和相对精度。

(1)绝对精度指对应于给定的数字量,D/A转换器的输出端实际测得的模拟输出值(电流或电压)与理论值之差。绝对精度由D/A转换的增益误差、线性误差和噪声等综合因素决定。

(2)相对精度指在零点和满量程值校准后,各种数字输入的模拟量输出与理论值之差,可把各种输入的误差画成曲线。对线性D/A转换而言,相对精度就是非线性度。1

精度一般采用数字量的最低有效位作为衡量单位,一般取为± 1/2 LSB。例如,若是8位D/A转换器,则转换精度为±(1/2)*(1/256) = ± 1/512。

线性误差

线性误差用来描述当数字量变化时,D/A转换输出的电模拟量按比例关系变化的程度。 模拟量输出偏离理想输出的最大值称为线性误差。

温度系数

温度系数是指在规定的范围内,温度每变化1℃增益、线性度、零点及偏移等参数的变化量。温度系数直接影响转换精度。1

分类

集成的D/A转换器的类型很多,有多种分类方法:

1)按其转换方式,可分为并行和串行两大类;

2)按生产工艺,可分为双极型(TTL型)和CMOS型等,它们的精度和速度各不相同;

3)按分辨率,可分为8位、10位、12位、16位等;

4)按输出方式,可分为电压输出型和电流输出型两类。1

基本电路T型电阻网络

图9-3为T型电阻网络4位D/A转换器的原理图。图中电阻译码网络是由R和2R两种阻值的电阻组成T型电阻网络,运算放大器构成电压跟随器,图中略去了数据锁存器,电子开关S3、S2、S1、S0在二进制数D相应位的控制下或者接参考电压VR(相应位为1)或者接地 (相应位为0)。当电子开关S3、S2、S1、S0全部接地时,从任一节点a、b、c、d向其左下看的等效电阻都等于R。3

下面利用叠加原理和戴维南定理来求转换器的输出U0。

当D0单独作用时,T型电阻网络如图9-4(a)所示。把a点左下等效成戴维宁电源,如图9-4(b)所示;然后依次把b点、c点、d点它们的左下电路等效成戴维南电源时分别如图9-4(c)、(d)、(e)所示。由于电压跟随器的输入电阻很大,远远大于R,所以D0单独作用时,d点电位几乎就是戴维南电源的开路电压D0VR/16,此时转换器的输出为4

当D1单独作用时,T型电阻网络如图9-5(a)所示,其d点左下电路的戴维宁等效如图9-5(b)所示。同理,D2单独作用时d点左下电路的戴维宁等效电源如图9-5(c)所示;D3单独作用时d点左下电路的戴维南等效电源如图9-5(d)所示。故D1、D2、D3单独作用时转换器的输出分别为4

利用叠加原理可得到转换器的总输出为

可见,输出模拟电压正比于数字量的输入。推广到n位,D/A转换器的输出为

T型电阻网络由于只用了R和2R两种阻值的电阻,因此其精度易于提高,也便于制造集成电路。但是,T型电阻网络也存在以下缺点:在工作过程中,T型网络相当于一根传输线,从电阻开始到运放输入端建立起稳定的电流电压为止需要一定的传输时间,当输入数字信号位数较多时,将会影响D/A转换器的工作速度。另外,电阻网络作为转换器参考电压VR的负载电阻将会随二进制数D的不同有所波动,参考电压的稳定性可能因此受到影响。所以实际中,常用下面的倒T型D/A转换器。4

倒T型电阻网络

图9-6为倒T型电阻网络D/A转换器原理图。由于P点接地、N点虚地,所以不论数码D0、D1、D2、D3是0还是1,电子开关S0、S1、S2、S3都相当于接地。因此,图中各支路电流I0、I1、I2、I3和IR的大小不会因二进制数的不同而改变。并且,从任一节点a、b、C、d向左上看的等效电阻都等于R,所以流出VR的总电流为4

而流入各2R支路的电流依次为

流入运算放大器反相端的电流为

运算放大器的输出电压为

若Rf=R,并将IR=VR/R代入上式,则有

可见,输出模拟电压正比于数字量的输入。推广到n位,D/A转换器的输出为

倒T型电阻网络也只用了R和2R两种阻值的电阻,但和T型电阻网络相比较,由于各支路电流始终存在且恒定不变,所以各支路电流到运放的反相输入端不存在传输时间,因此具有较高的转换速度。4