版权归原作者所有,如有侵权,请联系我们

[科普中国]-数学之美 |陈景润与哥德巴赫猜想

中国科普博览
原创
中国科协、中科院携手“互联网+科普”平台,深耕科普内容创作
收藏

编者注:阅读本文时,可以跳过公式,不会影响理解。

自1742年提出至今,**哥德巴赫猜想(Goldbach’s conjecture)**已经困扰数学界长达三个世纪之久。作为数论领域存在时间最久的未解难题之一,哥德巴赫猜想俨然成为一面旗帜,激励着无数数学家向着真理的彼岸前行。

**对不少人来说,了解并熟知“哥德巴赫猜想”,离不开两个人的功劳——陈景润和徐迟。**后者那篇著名的报告文学,让很多人知道了有位中国数学家,用了几大麻袋演算纸,将哥德巴赫猜想的证明往前推进了一步。

那么另一位功臣——陈景润究竟在这个领域取得了多大的进展呢?让我们从哥德巴赫猜想本身说起。

源起:素数引发的悬案

一个大于1的自然数,如果除了1与其自身外,无法被其他自然数整除,那么称这个自然数为素数(又称质数);大于1的自然数若不是素数,则称之为合数

今天故事的发端,就是这类被称为“素数”的数字。早在古埃及时代,人们似乎就已经意识到了素数的存在[1]。而古希腊的数学家们很早就已经开始对素数进行系统化的研究。例如欧几里得在《几何原本》中就已经证明了无限多个素数的存在[2]以及算术基本定理(即正整数的唯一分解定理,指出任何大于1的自然都可以唯一地写成若干个质数的乘积)[3]。而埃拉托斯特尼提出的筛法则为找出一定范围内所有的素数提供了可行的思路[4]。

古希腊数学家、“几何学之父”欧几里得(左)与数学家、地理学家、天文学家埃拉托斯特尼(右)。前者在其著作《几何原本》中提出五大公设,成为欧洲数学的基础。后者设计出了经纬度系统,并计算出地球的直径。

(图片来源:wikipedia)

埃拉托斯特尼筛法。筛法的原理十分简单,计算者从2开始,将每个素数的倍数筛出,记作合数。埃拉托斯特尼筛法是列出所有小素数最有效的方法之一。

(图片来源:wikipedia)

随着对素数理解的深入,素数的诸多奇特性质被人们发掘出来。1742年6月7日,普鲁士数学家克里斯蒂安·哥德巴赫在写给瑞士数学家莱昂哈德·欧拉的信中,提到了自己有关素数的一个发现:任一大于2的整数都可以写成三个质数之和。值得一提的是,当时欧洲数学界约定1也是素数。所以换成现代的数学语言,即**“**任一大于5的整数都可写成三个质数之和”。

将偶数表示为两个素数的和。截至2012年4月,数学家已经验证了4乘以10的18次方以内的偶数,没有发现哥德巴赫猜想的反例[5]。

(图片来源:wikipedia)

哥德巴赫无法确认这一发现的普适性,所以他寄希望于欧拉可以给出证明。欧拉在6月30日的回信中肯定了哥德巴赫的发现,并给 出了猜想的等价版本:

任一大于2的偶数,都可表示成两个素数之和。

这也是现在哥德巴赫猜想的通常表述方式,其亦称为**“强哥德巴赫猜想关于偶数的哥德巴赫猜想”**。欧拉认为可以将这一猜想视为定理,只可惜他也无法给出猜想的证明。

哥德巴赫信件的手稿

(图片来源:www.mscs.dal.ca)

由“强哥德巴赫猜想”,可以推出:

任一大于5的奇数都可写成三个素数之和。

这也称为**“弱哥德巴赫猜想”或关于奇数的哥德巴赫猜想”**。当然如果“强哥德巴赫猜想”可以被证明,“弱哥德巴赫猜想”也就迎刃而解。

沉寂:难以逾越的高山

哥德巴赫猜想的困难程度可以与任何一个已知的数学难题相比。

——戈弗雷·哈罗德·哈代

哥德巴赫猜想一直以来都深受业余数学爱好者的青睐,一个很重要的原因就是其表述十分简洁易懂。然而猜想的证明实际上是极为困难的。自1742年猜想被正式提出后的160余年里,数学家苦苦探寻,都没有取得任何实质性的进展,更多的只是提出一些等价的命题,或者是对猜想进行数值验证。

1900年,著名数学家希尔伯特在第二届国际数学家大会上提出的著名的二十三个问题,其中第八个问题就涉及三个有关素数的猜想:黎曼猜想、哥德巴赫猜想和孪生素数猜想**。**至今上述三个猜想的研究虽然较20世纪初已经有了长足的进展,甚至有弱化的情况已经被证明,但三个问题本身均仍未被解决。

参加学术会议的希尔伯特**。**1900年,希尔伯特在巴黎举行的第二届国际数学家大会上作了题为《数学问题》的演讲,提出了23个最重要的数学问题。希尔伯特问题在相当一段时间内引导了世界数学研究的方向,有力地推动了20世纪数学的发展。在许多数学家努力下,希尔伯特问题中的大多数在20世纪中得到了解决。

(图片来源:The Oberwolfach Photo Collection)

然而这长达160余年的探索并非毫无成果。由于欧拉、高斯、黎曼、狄利克雷、阿达马等数学家在数论与函数论领域的突破性研究,为之后以哥德巴赫为代表的数论研究打下了坚实的基础。

突破:划破夜空的曙光

数学是科学中的皇后,而数论是数学中的皇后。

——卡尔·弗雷德里希·高斯

问题真正的实质性进展出现在二十世纪20年代。当时出现了两种代表性的思路,一种是英国数学家哈代李特尔伍德在1923年论文中使用的**“哈代-李特尔伍德圆法[6],另一种是挪威数学家布朗**(Viggo Brun)使用的**“布朗筛法”**[7,8]。

哈代(左)、李特尔伍德(中)与布朗(右)。哈代,英国数学家,二十世纪英国分析学派的代表人物,其研究对后世分析学和数论的发展有深刻的影响。李利特尔伍德,英国数学家,研究领域涵盖数论和数学分析,与哈代有着长达35年的合作。布朗,挪威数学家,其在数论领域的工作极大地推动了哥德巴赫猜想和孪生素数猜想等的研究。

(图片来源:wikipedia;U of St And)

借助上述方法,哈代和李特尔伍德在1923年的论文中证明了**“在假设广义黎曼猜想成立的前提下,每个充分大的奇数都能表示为三个素数的和以及几乎每一个充分大的偶数都能表示成两个素数的和”**[6]。这里的“广义黎曼猜想”,指的是用狄利克雷L函数代替黎曼猜想中的黎曼ζ函数,其他表述不变。哈代和李特尔伍德的工作使哥德巴赫猜想的证明向前迈进了一大步。

利用上述方法,布朗在1919年证明,每个充分大的偶数都可以写成两个数之和,并且这两个数每个都是不超过9个素因数的乘积[7],所以上述结论也被记作**“****9+9”。按照布朗的思路,如果最终可以将素因数的个数缩减至1个,即最终证明“****1+1”**,那么也就意味着证明了哥德巴赫猜想。

冲刺:鼓舞人心的号角

陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。

——安德烈·韦伊

上文提到的两种思路都在二十世纪都得到了极大的发展。这也极大地推动了哥德巴赫猜想和弱哥德巴赫猜想的证明工作。1937年苏联数学家维诺格拉多夫(Ivan Vinogradov)在对于弱哥德巴赫猜想研究中取得了重大的突破[10]。他在圆法的基础上,去掉了哈代和李特尔伍德证明中对于广义黎曼猜想的依赖,完全证明了**“充分大的奇素数都能写成三个素数的和,即哥德巴赫-维诺格拉多夫定理。不过维诺格拉多夫无法给出“充分大”的下限,所以找到这一下限便成为了弱哥德巴赫猜想研究的主要方向。2013年秘鲁数学家哈洛德·贺欧夫各特**(Harald Andrés Helfgott)成功将维诺格拉多夫“充分大”的下限缩小至10的29次方左右,通过计算机验证在此之下的所有奇数,结果无一例外都符合猜想,从而最终完成了弱哥德巴赫猜想的证明[11]。

**维诺格拉多夫(左)与哈洛德·贺欧夫各特(右)。**伊万·马特维耶维奇·维诺格拉多夫,苏联解析数论专家,斯捷克洛夫数学研究所所长。哈洛德·贺欧夫各特,秘鲁数学家,法国国家科学研究院和巴黎高等师范学院研究员。

(图片来源:wikipedia)

相比较而言,强哥德巴赫猜想的研究困难相对更大。不过二十世纪上半叶以来,数学家遵照布朗筛法的研究思路,也取得了长足的进展。在布朗证明“9+9”后不久,1924年德裔美籍数学家拉德马赫(Hans Adolph Rademacher)成功证明了“7+7”[12],1932年德国数学家埃斯特曼(Theodor Estermann)证明了“6+6”[13],苏联数学家布赫希塔布(Alexander. A. Buchstab)于1938年和1940年证明了分别证明了“5+5”与“4+4”[10]。

拉德马赫(左)与埃斯特曼(右)

(图片来源:Math Gene Proj;Oxford Univ. Press)

布朗筛法较以往的数论方法而言有很强的组合数学特征,应用起来比较复杂。所以在研究的过程中,数学家不断对原有的筛法进行改进。考虑到以往的证明中,总是将命题“a+b”与对一个筛函数的估计直接联系起来,得到的结果相对较弱。1941年,库恩(P. Kuhn)提出了“加权筛法”,借此我们可以在同样的筛函数上、下界估计的基础上得到强结果。例如库恩于1954年就给出了“a+b

内容资源由项目单位提供