发现历史氯气的发现
舍勒发现氯气是在1774年,当时他正在研究软锰矿(二氧化锰),当他使软锰矿与浓盐酸混合并加热时,产生了一种黄绿色的气体,这种气体的强烈的刺激性气味使舍勒感到极为难受,但是当他确信自己制得了一种新气体后,他又感到一种由衷的快乐。
舍勒制备出氯气以后,把它溶解在水里,发现这种水溶液对纸张、蔬菜和花都具有永久性的漂白作用;他还发现氯气能与金属或金属氧化物发生化学反应。从1774年舍勒发现氯气以后,到1810年,许多科学家先后对这种气体的性质进行了研究。这期间,氯气一直被当作一种化合物。直到1810年,戴维经过大量实验研究,才确认这种气体是由一种化学元素组成的物质。他将这种元素命名为chlorine,这个名称来自希腊文,有“绿色的”意思。我国早年的译文将其译作“绿气”,后改为氯气。
技术发展史氯气的生产方法经历了漫长的发展过程。1774年瑞典化学家舍勒用软锰矿(含有二氧化锰)和浓盐酸作用,首先制得了氯气,其反应方程式为:
4HCl(浓)+MnO₂=加热= MnCl₂+2H₂O+Cl₂↑
然而,由于当时还不能够大量制得盐酸,故这种方法只限于实验室内制取氯气。后来法国化学家贝托雷把氯化钠、软锰矿和浓硫酸的混合物装入铅蒸馏器中,经过加热制得了氯气,其反应方程式为:
2NaCl+3H₂SO₄(浓)+MnO₂=加热=2NaHSO₄+MnSO₄+2H₂O+Cl₂↑
因为此法原料易得,所以,自1774年舍勒制得氯气到1836年止,人们一直沿用贝托雷发明的方法来生产氯气。
1836年古萨格发明了一种焦化塔,用来吸收路布蓝法生产纯碱(Na₂CO₃)的过程中排出的氯化氢气体(以前这种含氯化氢的气体被认为是一种废气,从古萨格开始,才得到了充分利用)得到盐酸,从此盐酸才成为一种比较便宜的酸,可以广为利用.舍勒发明的生产氯气的方法,经过改进,到此时才成为大规模生产氯气的方法。
1868年狄肯和洪特发明了用氯化铜作催化剂,在加热时,用空气中的氧气来氧化氯化氢气体制取氯气的方法,其反应方程式为:
4HCl+O₂=2H₂O+2Cl₂↑
这种方法被称为狄肯法。(又译为地康法)
上面这些生产氯气的方法,虽然在历史上都起过一定的作用,但是它们与电解法生产氯气相比,无论从经济效益还是从生产规模上,都大为逊色.当电解法在生产上付诸实用时,上述生产氯气的方法就逐渐被淘汰了。
电解法的诞生要追溯到1833年。法拉第经过一系列的实验,发现当把电流作用在氯化钠的水溶液时,能够获得氯气,其反应方程式为:
2NaCl+2H₂O ==2NaOH+H₂↑+Cl₂↑
后来,英国科学家瓦特也发现了这种方法,并在1851年获得了一份关于生产氯气的英国专利。但是由于当时没有实用的直流发电机以产生足够的电流,所以电解法也只能停留在实验室规模,不能付诸工业生产,而被束之高阁。一直到十九世纪七十至八十年代,出现了比较好的直流发电机,电解法才得到广泛的应用。从此,氯气的工业生产跨入了一个新纪元。然而当时电解制取氯气所使用的电极为汞,致使电解得到的氯气、氢气中混有相当多的汞蒸气。这种“汞法制氯”对环境危害很大,所以新的“离子交换膜法”制取氯气,更环保,更节能。(汞法制氯是制取氯气的主流方法,如2010年中国有46%的氯气,2000年西欧50.1%的氯气都为此法生产的)。1
理化性质物理性质物质结构
原子结构:氯原子最外层有7个电子,反应中易得到1个电子或共用一个电子对达到稳定结构(共价键)。
分子结构:氯分子为双原子分子,分子式Cl₂。
状态
常温常压下为有强烈刺激性气味的黄绿色的气体。
密度
氯气密度是空气密度的2.5倍,标况下ρ=3.21kg/m³。
易液化
熔沸点较低,常温常压下,熔点为-101.00℃,沸点-34.05℃,常温下把氯气加压至600~700kPa或在常压下冷却到-34℃都可以使其变成液氯,液氯是一种油状的液体,其与氯气物理性质不同,但化学性质基本相同。
溶解性
可溶于水,易溶于有机溶剂(例如:四氯化碳)难溶于饱和食盐水。1体积水在常温下可溶解2体积氯气,形成黄绿色氯水,密度为 3.170g/L,比空气密度大。
自然分布
自然界中游离状态的氯存在于大气层中,不过此时的氯气受紫外线经常会分解成两个氯原子(自由基)。是破坏臭氧层的主要单质之一。
化学性质助燃性
氯气支持燃烧,许多物质都可在氯气中燃烧(除少数物质如碳单质等)。
与金属反应
1、与钠的反应:2Na+Cl2=2NaCl
现象:钠在氯气里剧烈燃烧,产生大量的白烟,放热。
2、与铜的反应:Cu+Cl2=CuCl2
现象:红热的铜丝在氯气里剧烈燃烧,瓶里充满棕黄色的烟,加少量水后,溶液呈蓝绿色(绿色较明显),加足量水后,溶液完全显蓝色。
3、与铁的反应:3Fe+3Cl2=2FeCl3
现象;铁丝在氯气里剧烈燃烧,瓶里充满棕红色烟,加少量水后,溶液呈黄色。
4、与镁的反应:Mg+Cl2=MgCl2
现象;非常剧烈的燃烧,生成白色的烟。
注:氯气具有强氧化性,加热下可以与所有金属反应,如金、铂在热氯气中燃烧,而与Fe、Cu等变价金属反应则生成高价金属氯化物。
常温下,干燥氯气或液氯不与铁反应,只能在加热情况下反应,所以可用钢瓶储存氯气(液氯)。
与非金属反应
1、与氢气的反应:H₂+Cl₂=点燃=2HCl
现象:H₂在Cl₂中安静地燃烧,发出苍白色火焰,瓶口处出现白雾。
H₂+Cl₂=光照=2HCl
现象:H₂在Cl₂中安静地燃烧,发出苍白色火焰,瓶口处出现白雾。
注:将点燃的氢气放入氯气中,氢气只在管口与少量的氯气接触,产生少量的热;点燃氢气与氯气的混合气体时,大量氢气与氯气接触,迅速化合放出大量热,使气体急剧膨胀而发生爆炸。工业上制盐酸使氯气在氢气中燃烧。氢气在氯气中爆炸极限是9.8%~52.8%。
2、与磷的反应:2P+3Cl₂(少量)=点燃=2PCl₃
2P+5Cl₂(过量)=点燃=2PCl5
现象:产生白色烟雾
3、与硫的反应:2S+Cl₂=点燃=S₂Cl₂
注:在一定条件下,氯气还可与S、Si等非金属直接化合。
4、与水反应:Cl₂+H₂O=HCl+HClO(可逆反应)
现象:水变黄绿色,气泡在水里又冒出来,有刺激性气味。
注:在该反应中,氧化剂是Cl₂,还原剂也是Cl₂,本反应是歧化反应。氯气遇水会产生次氯酸,次氯酸具有净化(漂白)作用,用于消毒——溶于水生成的HClO具有强氧化性。
5、与二氧化硫和水反应:SO₂+Cl₂+2H₂O=H₂SO₄+2HCl
6、与碱溶液反应:Cl2+2NaOH=NaCl+NaClO+H2O
2Cl2+2Ca(OH)2=CaCl₂+Ca(ClO)2+2H2O
注:上述两反应中,Cl₂作氧化剂和还原剂,是歧化反应。
7、与盐溶液反应: Cl2+2FeCl2=2FeCl3
Cl2+Na2S=2NaCl+S
Cl2+2I-=2Cl-+I2↓
Cl2+2Br-=2Cl-+Br2↓
注:中学阶段用来证明氯气非金属性和氧化性比硫强。
8、与二硫化碳反应:CS2+3Cl2→CCl4+S2Cl2
注:反应条件为90℃到100℃。
9、与甲烷的反应:CH₄+Cl₂—光照→CH₃Cl+HCl
CH₃Cl+Cl₂—光照→CH₂Cl₂+HCl
CH₂Cl₂+Cl₂—光照→CHCl₃+HCl
CHCl₃+Cl₂—光照→CCl₄+HCl
现象:黄绿色气体消失,容器内壁出现液珠,容器内压强下降。氯气与甲烷反应时,四个反应同时进行。
10、与乙烯的反应:CH₂=CH₂+Cl₂→CH₂ClCH₂Cl(1,2-二氯乙烷)(加成反应)
11、与苯的反应: CH₂=CH₂+Cl₂→CH₂ClCH₂Cl(1,2-二氯乙烷)
注:该取代反应在氯化铁的催化下才能发生。
C6H6+ 3Cl2→ C6H6Cl6
注:该加成反应在紫外线照射(无铁)的条件下才能发生。2
制备方法工业制法1、工业生产中用直流电电解饱和食盐水法来制取氯气:
2NaCl+2H₂O=通电= H₂↑+Cl₂↑+2NaOH
氯碱工业始于 20世纪 20年代,氯气的生产主要是采用电解卤水(饱和食盐水)。
精制的饱和食盐水注入电解槽后,在直流电的作用下进行电解 ,其电极反应如下:
阳极反应:2Cl-- 2e → Cl2↑
阴极反应:2H2O+ 2e → H2↑+ 2OH-
总反应: 2NaCl+ 2H2O → 2NaO H+ Cl2↑+ H2↑
通过电解槽出来的氯气中含有许多杂质,如氢气、水蒸气、三氯化氮等 ,必须进行消除杂质或进行干燥处理。
2、其它冶金工业的副产品,如冶镁:MgCl2(熔融)=电解= Mg + Cl2 ↑
炼钠:2NaCl(熔融)=电解= 2Na + Cl2 ↑
实验室制法实验室通常用氧化浓盐酸的方法来制取氯气:
常见的氧化剂有:MnO₂、KMnO₄、Ca(ClO)₂、Co2O3
发生的反应分别是:
4HCl(浓)+MnO₂ =加热=MnCl₂+Cl₂↑+2H₂O
16HCl+2KMnO₄=2KCl+2MnCl₂+8H₂O+5Cl₂↑
(这两个反应用的盐酸比较稀的话,反应将不再进行,没有盐酸可用一种非还原性酸和氯化钠的混合物代替,也可产生氯气。)
4HCl+Ca(ClO)₂=CaCl₂+2H₂O+2Cl₂↑ (此反应需要的盐酸很稀,1mol/L便可以剧烈反应。)
2H++ClO-+Cl-=H2O+Cl2↑
【只要能电离出H+的酸即可参加并且发生此归中反应;如:草酸。但由于参加反应的酸电离出的H+能力的不同,反应的速率也会不同。如果此酸为有机酸,且易挥发,那么要注意不能在强光照的照射下反应,不然氯气可能会和挥发出来的有机酸发生取代反应发生爆炸或生成有毒物质,如:冰醋酸会和氯气发生取代反应生成氯醋酸(剧毒固体)、二氯醋酸(固体)、三氯醋酸(固体)】
如不用浓盐酸,亦可用NaCl(固体)跟浓硫酸来代替。如:
2NaCl+3H₂SO₄(浓)+MnO₂=加热=2NaHSO₄+MnSO₄+2H₂O+Cl₂↑
总之,实验室制氯气的办法都围绕着一个核心:氯离子+氧化剂+酸性环境,氧化剂的氧化性不强的话还需不同程度加热。
收集方法:用向上排空气法或者排饱和食盐水法
净化方法:用饱和食盐水出去HCl气体,用浓硫酸除去水蒸气。
尾气吸收:用强碱溶液(如NaOH溶液)吸收。
验满方法:⑴ 将湿润的淀粉-KI试纸靠近盛Cl2瓶口,观察到试纸立即变蓝,则证明已集满。
⑵ 将湿润的蓝色石蕊试纸靠近盛Cl2瓶口,观察到试纸先变红后褪色,则证明已集满。
⑶ 实验室制备氯气时,常常根据氯气的颜色判断是否收集满。
**注意:**切勿被网络上的无知言论欺骗,氯酸盐绝对不能用来制备氯气,因为会生成大量难以分离且易爆炸的ClO2。3
主要用途据统计,20世纪90年代初期化学工业营业额的半数以上与氯有关;化学工业人员中有1/4左右从事与氯有关的活动。用于化学工业和医药工业的氯量约占其总产量的75%。1993年美国产量最大的50种化工产品中,氯的产量仅次于硫酸、氮气、氧气、乙烯、生石灰、氨气和氢氧化钠,居第8位。自从60年代以来,一个国家的氯产量常被看做是化学工业发展水平的重要标志。
化学工业化学工业用于生产次氯酸钠、三氯化铝、三氯化铁、漂白粉、溴素、三氯化磷等无机化工产品,还用于生产有机氯化物,如氯乙酸、环氧氯丙烷、一氯代苯等。也用于生产氯丁橡胶、塑料及增塑剂。日用化学工业用于生产合成洗涤剂原料烷基磺酸钠和烷基苯磺酸钠等。
制****环氧丙烷
在氯醇法生产环氧丙烷的过程中,有一步反应是丙烯与次氯酸反应生成氯醇,因此可将氯水用于氯醇化反应中,同时氯水可部分代替生产所用工艺水。
反应方程式如下:
Cl2+H2O==HCIO+HCl;
CH3CHCH2+HCIO==CH3CHClCH2OH。
CH3CHClCH2OH+Ca(OH)2 ==CH3CHCH2O+CaCl2+2H2O。
制备氯化铁
此方法利用工业盐酸或酸洗废液与废铁屑反应,生成氯化亚铁溶液,氯化亚铁溶液与废铁屑组成的循环吸收液与氯气发生氧化还原反应,氯气将Fe2+氧化为Fe3+,Fe3+被吸收液中的铁屑还原为Fe2+,Fe2+继续与氯气反应,形成循环吸收。
涉及应方程式有:
Fe+2H+=Fe2++H2↑;
2Fe2++Cl2=2Fe3++2Cl- ;
2Fe3++Fe=3Fe2+ 。
制盐酸
工业上制取盐酸时,首先在反应器中将氢气点燃,然后通入氯气进行反应,制得氯化氢气体,反应方程式为:H2+Cl2=2HCl。氯化氢气体冷却后被水吸收成为盐酸。在氯气和氢气的反应过程中,有毒的氯气被过量的氢气所包围,使氯气得到充分反应,防止了对空气的污染。
制聚氯乙烯
重单体制法可分为两种路线,一种是以乙烯为原料的石油路线,即氧氯化法。由石油裂解分离出乙烯,然后用氧气和HCl(裂解副产物)作用生成的Cl2与乙烯发生氯化反应,生成二氯乙烷,再裂解出氯化氢得氯乙烯。
其总反应方程式为:
4CH2=CH2+O2+2Cl2→4CH2=CHCl+2H2O
另一种为乙炔电石法。以电石为原料制备乙炔,然后与氯化氢反应制得氯乙烯。
反应方程式为:
CaC2+2H2O→4CHCH+Ca(OH)2;
CHCH+HCl→CH2=CHCl(反应条件为 HgCl2/C 120-180℃)。
制漂白物
氯气制成的漂白物很多,一般生活中涉及两种,NaClO和Ca(ClO)₂。一般来说,消毒液是NaClO,一般用氯气通入氢氧化钠中制得。但其价格较高,工业漂白不用,常见于84。消毒粉则是Ca(ClO)₂,因为其不够稳定一般为固体,是氯气通入石灰乳中制得,价格低廉,用于工业漂白,使用方法是加水溶解有效成分是次氯酸钙,从而漂白。保存以上漂白剂时,注意密封干燥,避免阳光直射。因为次氯酸盐在空气中会与二氧化碳、水发生反应,产生次氯酸,次氯酸在光照下分解,从而导致漂白剂失效。
制备次氯酸钙固体,用氢氧化钠溶液吸收含氯尾气得到的产物是次 氯酸钠溶液,得不到固体产物,不容易长时间保存。 用氢氧化钠和氢氧化钙的混合水溶液吸收氯气时, 能够得到次氯酸钙固体,便于储存和使用。
电子工业在电子工业中,高纯氯气主要用于电子工业干刻、光导纤维、晶体生长和热氧化。
干法蚀刻
干法刻蚀是用等离子体进行薄膜刻蚀的技术。
干刻又叫干法蚀刻,是指气固反应,气相产物主要有GaCl2,AsCl2和氢气,使用氯气做等离子蚀刻时,通常采用5%的高纯氯气+95%的氦气。
用氯气氧化降解制备纳米微晶纤维素
中国专利公开了用氯气氧化降解制备纳米微晶纤维素的方法,与水解法制备纳米微晶纤维素相比,氯气氧化降解法利用了氯气水解所产生的次氯酸钠的漂白作用,可以使制得的纳米微晶纤维素光亮、洁白。
氯气还用于大规模集成电路、光纤、高温超导等技术领域。
其他方面用于啤酒厂的污水处理
中国专利公布了用氯气对啤酒厂污水进行处理的方法。氯气价格低廉,用量少,消毒可靠,工艺成熟,是自来水公司普遍使用的消毒剂,氯气还可以除臭、除微生物,对生物耗氧量和化学耗氧量去除率也很高,可确保回收水质的稳定,因而比较适合啤酒厂污水的处理。
自来水消毒
自来水常用氯气消毒,1L水里约通入0.002g氯气,消毒原理是其与水反应生成了次氯酸,它的强氧化性能杀死水里的病菌。而之所以不直接用次氯酸为自来水杀菌消毒,是因为次氯酸易分解难保存、成本高、毒性较大,则用氯气消毒可使水中次氯酸的溶解、分解、合成达到平衡,浓度适宜,水中残余毒性较少。
去除乙炔中的硫、磷杂质
乙炔气是PVC生产的主要原料。工业乙炔气中,硫、磷是以H2S和H3P气体形式存在的,这2种气体超标,会使生产PVC所用的催化剂中毒。利用氯水中的CIO-的强氧化性,对乙炔气进行喷淋洗涤,可除去H2S和H3P。
反应方程式如下:
4ClO-+H2S→H2SO4+4Cl-
4ClO-+H3P→H3PO4+4C1-。
医药工业氯气常用于制药,常参与含氯基化合物的合成。如:马来酸氨氯地平片;N-(2-甲基-2、3-二氢-1H-吲哚基)-3-氨磺酰基-4-氯-苯甲酰胺。
农药工业用作生产高效杀虫剂、杀菌剂、除草剂、植物生长刺激剂的原料。
冶金工业主要用于生产金属钛、镁等。4
危险与防控毒理资料人对不同浓度氯气的反应
|| ||
急性毒性
实验动物急性中毒的表现最初是不安静,后呈衰弱、咳嗽、流泪、喷嚏、鼻腔分泌物增多等。吸入高浓度时可引起呼吸暂停;或先伴有气急,次为呼吸变慢、体温降低、血压降低,而导致肺水肿、血液浓缩等。并可见支气管扩张和间质性肺炎。
慢性毒性
实验动物慢性中毒大多体重减轻,抵抗力减弱,易感染呼吸道与肺部疾病。
“三致”作用与遗传毒性 动物实验表明,氯气无致畸、致突变和致癌作用,也非促癌因素。
中毒机理:
氯气是一种有毒气体,它主要通过呼吸道侵入人体并溶解在黏膜所含的水分里,生成次氯酸和盐酸,对上呼吸道黏膜造成损伤:次氯酸使组织受到强烈的氧化;盐酸刺激黏膜发生炎性肿胀,使呼吸道黏膜浮肿,大量分泌黏液,造成呼吸困难,所以氯气中毒的明显症状是发生剧烈的咳嗽。症状重时,会发生肺水肿,使循环作用困难而致死亡。由食道进入人体的氯气会使人恶心、呕吐、胸口疼痛和腹泻。1L空气中最多可允许含氯气0.001mg,超过这个量就会引起人体中毒。
氯气吸入后与粘膜和呼吸道的水作用形成氯化氢和新生态氧。氯化氢可使上呼吸道粘膜炎性水肿、充血和坏死; 新生态氧对组织具有强烈的氧化作用,并可形成具细胞原浆毒作用的臭氧。氯浓度过高或接触时间较久,常可致深部呼吸道病变,使细支气管及肺泡受损,发生细支气管炎、肺炎及中毒性肺水肿。由于刺激作用使局部平滑肌痉挛而加剧通气障碍,加重缺氧状态; 高浓度氯吸入后,还可刺激迷走神经引起反射性的心跳停止。氯气中毒不可以进行人工呼吸。
临床表现
急性中毒主要为呼吸系统损害的表现。
a、 起病及病情变化一般均较迅速。
b、 可发生咽喉炎、支气管炎、肺炎或肺水肿,表现为咽痛、呛咳、咳少量痰、气急、胸闷或咳粉红色泡沫痰、呼吸困难等症状,肺部可无明显阳性体征或有干、湿性罗音。有时伴有恶心、呕吐等症状。
c、 重症者尚可出现急性呼吸窘迫综合征,有进行性呼吸频速和窘迫、心动过速,顽固性低氧血症,用一般氧疗无效。
d、 少数患者有哮喘样发作,出现喘息,肺部有哮喘音。
e、 极高浓度时可引起声门痉挛或水肿、支气管痉挛或反射性呼吸中枢抑制而致迅速窒息死亡。
f、 病发症主要有肺部继发感染、心肌损害及气胸、纵隔气肿等。
g、 X线检查:可无异常,或有两侧肺纹理增强、点状或片状边界模糊阴影或云雾状、蝶翼状阴影。
h、 血气分析:病情较重者动脉血氧分压明显降低。
i、心电图检查:中毒后由于缺氧、肺动脉高压以及植物神经功能障碍等,可导致心肌损害及心律失常。
眼损害:氯可引起急性结膜炎,高浓度氯气或液氯可引起眼灼伤。
皮肤损害:液氯或高浓度氯气可引起皮肤暴露部位急性皮炎或灼伤。
中毒或泄露处理中毒处理
吸入气体者立即脱离现场至空气新鲜处,保持安静及保暖。眼或皮肤接触液氯时立即用清水彻底冲洗。
吸入后有症状者至少观察12小时,对症处理。吸入量较多者应卧床休息,吸氧,给舒喘灵气雾剂、喘乐宁(Ventolin)或5%碳酸氢钠加地塞米松等雾化吸入。
急性中毒时需合理氧疗; 早期、适量、短程应用肾上腺糖皮质激素; 维持呼吸道通畅; 防治肺水肿及继发感染。参见《急性刺激性气体中毒性肺水肿的治疗》
其他对症处理。
眼及皮肤灼伤按酸灼伤处理,参见《化学性眼灼伤的治疗》和《化学性皮肤灼伤的治疗》。
泄露处理
氯气发生泄漏后,应采取针对性的应急措施。泄漏污染区人员应迅速撤离至上(侧)风处,并立即设置警戒,小泄漏时,于150米处设置警戒,大泄漏时,于450米设置警戒。消防人员必须佩戴空气呼吸器或氧气呼吸器,穿全身防火防毒服,手戴橡胶手套,在上风向进行处置。尽可能切断泄漏源,合理通风,加速扩散,喷雾状水稀释、溶解,构筑围堤或挖坑收容产生的大量废水。如有可能,用管道将泄漏物导至还原剂(酸式硫酸钠或酸式碳酸钠)溶液中或将漏气钢瓶浸入石灰乳液中。具体处置措施为:
(一)关阀断源。生产装置发生氯气泄漏,事故单位的工程技术人员或熟悉工艺的人员关闭输送物料的管道阀门,断绝物料供应,切断事故源,公安消防队出开花或喷雾水枪掩护并协助操作。
(二)倒罐转移。储罐、容器壁发生泄漏,无法堵漏时,可采用疏导的方法将液氯倒入其他容器或储罐。
(三)化学中和。储罐、容器壁发生少量泄漏,可采用化学中和的方法,即在消防车水罐中加入生石灰、苏打粉等碱性物质,向罐体、容器喷射,以减轻危害,也可将泄漏的液氯导至碳酸钠溶液中,使其中和,形成无危害或微毒废水。具体反应为CaO+H2O一Ca(OH)2,2Ca(OH)2+2Cl2一CaCl2+Ca(CIO)2+2H2O。生成氯化钙和次氯酸钙,都没有毒害作用。如果现场温度比较高,则生成氯化钙和氯酸钙。产物的沉降度比较好,不会形成悬浮物,很快降落到地面,对地面植物起到钙肥作用。
(四)稀释降毒。以泄漏点为中心,在储罐、容器壁的四周设置水幕或喷雾水枪喷射雾状水进行稀释降毒,但不宜使用直流水或直接对准泄漏点喷射,避免氯气与水作用生成酸,加速对泄漏点的腐蚀。除了使氯气溶解于水外,还可以利用氯气与水的反应加大对空气中氯气的吸收。
(五)浸泡水解。运输途中体积较小的液氯钢瓶阀门损坏,发生泄漏,又无堵漏器具无法制止外泄时,可将钢瓶浸入氢氧化钙等碱性溶液中进行中和,也可将钢瓶浸入水中。
(六)器具堵漏。管道壁发生泄漏,且泄漏点处在阀门以前或阀门损坏,不能够关阀止漏时,可使用不同形状的堵漏垫、堵漏楔、堵漏袋等器具实施封堵。(a)微孔跑冒滴漏可用螺丝钉加粘合剂旋入孔内的方法堵漏。(b)罐壁撕裂发生泄漏,可用充气袋、充气垫等专用器具从外部包裹堵漏。(c)带压管道泄漏,可用捆绑式充气堵漏带或使用金属外壳内衬橡胶垫等专用器具实施内外堵漏。(d)阀门法兰盘或法兰垫片损坏,发生泄漏,可用不同型号的法兰夹具,并注射密封胶的方法进行封堵,也可直接使用专门的阀门堵漏工具实施堵漏。
(七)洗消处理。一是化学消毒法。即用氢氧化钠、氨水、碳酸氢钠等碱性物质溶于水中,喷洒在污染区域或受污染体表面,发生化学反应改变毒物性质,成为无毒或低毒物质;二是物理消毒。即用吸附垫、活性炭等具有吸附能力的物质,吸附回收后转移处理;对染毒空气可用水驱动排烟机吹散降毒,也可对污染区暂时封闭,依靠自然条件如日晒、通风使毒气消失;也可喷射雾状水进行稀释降毒。
储存运输储运过程中爆炸燃烧危险性
由于物质急剧氧化或分解反应,使温度、压力增加或使两者同时增加的现象,称为爆炸。发生爆炸时,势能(化学能或者机械能)突然转变为动能,有高压气体生成或者释放出高压气体,这些高压气体随之做机械功,如移动、形状改变和抛射周围的物体。爆炸分为物理爆炸、化学爆炸和核爆炸,物理爆炸是由于液体变成蒸汽或气体迅速膨胀,压力急速增加,并大大超过容器的极限压力而发生的爆炸;化学爆炸是因物质本身起化学反应,产生大量的气体和高温而发生的爆炸。氯气生产储运过程中的爆炸兼有物理和化学爆炸两种可能。
液氯在生产和贮运中易发生下列问题:
①液化尾气中氯气、氢气与空气的混合气爆炸;
②包装容器中残存有机物杂质与氯气反应爆炸;
③水和食盐水溶液中铵盐带入液化系统,会使液氯中三氯化氮积累而引起爆炸。
当液氯蒸发用完后,所用容器均须用水和碱水冲洗,以除去被三氯化氮污染的液氯后,方能修理和使用。氯是剧毒物,生产中对受压容器等设备应严格要求,防止氯气泄漏。空气中氯气允许浓度不大于1ppm。
氯气液化
氯气通常可直接利用,但为了制取纯净的氯气,并考虑贮运的方便,而把一部分氯气进行液化制成液氯,用钢瓶或槽车运往用户。生产中,将从电解槽出来的热氯气(其中含有少量氢、氧和二氧化碳等杂质),用冷水洗涤或在换热器内冷凝脱水,再用硫酸干燥(必要时可以液氯洗涤以除去水分和杂质),然后送去液化。因湿氯对铁有腐蚀作用,液化前氯中水分应低于50ppm。
氯气液化的常用方法有:(1)低温法;(2)直接压缩法或高压法;(3)低温压缩法或综合法。
氯气液化的温度和压力范围很大,工业生产上分为低压法、中压法和高压法。低压法在氯气为0.078~0.147MPa(表压),冷却温度为-35~-40℃下进行液化。中压法在氯气为0.245~0.49MPa,冷却温度为-15~-20℃下进行液化。高压法的氯气为0.98~1.17MPa,用15~25℃水冷却即可液化。高压法比低压法能耗低,循环水用量少,但设备费用较高,适于大规模生产使用,中、小型氯碱厂多采用中压法。液化率由氯中含氢量来决定。液化尾气中含氢不得超过4%(体积)。尾气含60%~70%的氯气可作为合成盐酸、氯苯、次氯酸盐的原料气,也可经过深度净化精制,使液化率达到98%~99%。
防止泄露氯气泄漏极易造成人身伤亡和区域性污染,防止氯气泄漏的方法有:
①不能选用存在缺陷的设备和部件,各设备和部件要定期检测和检验;
②加强工艺管理,严格控制工艺指标,发现问题必须及时检查和处理;
③加强事故氯处理装置的管理和检修,相关装置采用多路电源供电,定期清洗事故氯处理装置,机泵定期试车;
④为了及时发现氯气泄漏,在生产、储存、输送和使用的岗位都要安装氯气报警器,一旦氯气泄漏,可及早发现,防止事故扩大,并在液化岗位安装电视监控和碱液喷淋装置;
⑤加强对职工的安全教育和培训。5
相关资料相关法规职业卫生标准:中国MAC 1 mg/m³;美国ACGIH TLV-STEL 2.9 mg/m³ (1 ppm); TLV-TWA 1.5 mg/m³ (0.5 ppm)
中国职业病诊断国家标准:职业性急性氯气中毒诊断标准及处理原则GB4866-1996。
危规:GB2.3类23002(液化的)。原铁规:剧毒气体,31001.UN NO.1017。IMDG CODE 2028页,2类。副危险6.1。
重大事件2004年4月15日傍晚19时,重庆天原化工厂由于氯罐及相关设备陈旧发生氯气泄漏事件,导致排污罐发生爆炸;4月16日下午5时57分,重庆天原化工厂有关人员在处置氯气泄漏事故时违规操作,导致液氯贮气罐发生爆炸。事故造成9人死亡,3人受伤,15万群众被疏散。
2016年4月12日17时许,山西省临猗县一废品收购站发生氯气泄漏事件,附近一所小学的数十名小学生随后出现呼吸不适和腹部疼痛症状,被送往临猗县人民医院接受治疗。
自2002年5月起,我省消防部队己经成功处置氯气泄漏及泄漏引起火灾事故共二十余起。2002年5月28日黄石市矿务局金昌公司的氯气泄漏,消防部队成功处置并疏散2000余户居民,约6400多人;2003年11月6日武汉市桥口区简易街东风造纸厂氯气储罐(容量1吨)发生泄漏,消防部队从现场救出200余人,成功堵漏并安全转移储罐。6