版权归原作者所有,如有侵权,请联系我们

[科普中国]-赤藓糖醇

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

基本信息

中文别名:1,2,3,4-丁四醇;内消旋-间赤藻糖醇

英文别名:Erythritol; 1,2,3,4-Butanetetrol; meso-1,2,3,4-Tetrahydroxybutane; butane-1,2,3,4-tetrol; (2R,3R)-butane-1,2,3,4-tetrol; (2R,3S)-butane-1,2,3,4-tetrol; (2S,3S)-butane-1,2,3,4-tetrol

分子量:122.12

纯度:>99.0%

等级:GR

MDL号:MFCD00004710

性质主要性质(1)甜度低:赤藓糖醇的甜度只有蔗糖的60%-70%,入口具有清凉味,口味纯正,没有后苦感,可与高倍甜味剂复配使用能抑制其高倍甜味剂的不良风味。

(2)稳定性高:对酸、热十分稳定,耐酸耐碱性都很高,在329度温度以下也不会发生分解和变化,不会发生美拉德反应而发生变色。

(3)溶解热高:赤藓糖醇溶解于水中时具有吸热效果,溶解热只有97.4KJ/KG,比葡萄糖和山梨糖醇的吸热度都高,食用时具有清凉感。

(4)溶解度高:25℃赤藓糖醇的溶解度为36%(W/W),随着温度升高赤藓糖醇溶解度升高,比葡萄糖、甘露糖、阿拉伯糖醇溶解度都高,易于结晶析出晶体。

(5)吸湿性低:赤藓糖醇非常容易结晶,但在90%湿度环境中都不会吸湿,易于粉碎得到粉末状产品,可用于食品表面防止食品吸湿而变质。

物理性质熔点:118-120 °C(lit.)

沸点:329-331 °C(lit.)

密度:1,451 g/cm3

闪点:329-331°C

储存条件:−20°C

溶解度:H2O: 0.1 g/mL, clear to almost clear, colorless

水溶解性:soluble

白色结晶,微甜,相对甜度0.65。有清凉感。发热量低,约为蔗糖发热量的十分之一。溶于水(37%,25℃),因溶解度较低(与蔗糖相比),易结晶,适于需蔗糖口感的食品,如巧克力和餐桌糖等。不被酶所降解,只能透过肾(易被小肠吸收)从血液中排至尿中排出,不参与糖代谢和血糖变化,故宜于糖尿病患者食用。在结肠中不致发酵,可避免肠胃不适。不龋齿。熔点126℃。

化学性质Merck:14,3675

BRN:1719753

稳定性:Stable. Incompatible with strong oxidizing agents.

CAS 数据库:149-32-6(CAS DataBase Reference)

NIST化学物质信息:2(r),3(s)-1,2,3,4-Butanetetrol(149-32-6)

EPA化学物质信息:1,2,3,4-Butanetetrol, (2R,3S)-rel-(149-32-6)

生产用菌株:主要有假丝酵母属、球拟酵母属、毛孢子菌属、三角酵母属、毕赤酵母属等,时下以类酵母真菌Moniliella(丛梗孢科)发酵产物浓度和收率最高,大约可以达到175g/L,得率70%。

国内生产菌株主要为解脂假丝酵母。

制备由小麦、玉米等淀粉经安全、适当的食用级嗜高渗酵母如丛梗孢酵母(Moniliella pllinis)、脂假丝酵母(Candida lipolytica)或类丝孢酵母(Tricho sporonoides megachilensis)在高浓度下(>450g/L)进行酶解发酵后,发酵醪液经加热杀菌并过滤然后经离子交换树脂、活性炭和超滤纯化,结晶、洗涤并干燥而得。一般得率约50%。

功能(1) 低热量:赤藓糖醇的热量低,其能量值为1.65kJ/g,而蔗糖为16.7kJ/g,木糖醇为11.7kJ/g,赤藓糖醇是能量最低的功能糖,热量仅有蔗糖热量的十分之一。由于其分子量小,容易被人体吸收,并且只有少量进入人体大肠被微生物发酵.80%的赤藓糖醇被人体食用后进入人体血液之中,但不能被人体内酶分解代谢,不为机体提供能量,不参加糖代谢,只能通过尿液从人体排出。实验证明人体赤藓糖醇一次性日最大食用量为20克,除去被人体所分解的能量,能利用的仅为0.67kJ/g。

(2)耐受性高:人体对赤藓糖醇的耐受量为每千克体重为0.8 克,比木糖醇、乳糖醇和麦芽糖醇都高,主要原因是赤藓糖醇的分子量小,吸收少,主要通过尿液排出,从而避免了高渗现象造成腹泻发生,避免了肠道细菌发酵产生胀气现象。

(3) 抗龋齿性:赤藓糖醇不被人体口腔细菌利用,因而不会产生酸性物质对牙齿造成伤害,从而引生牙齿发生龋变,对口腔细菌生长产生抑制效果,从而起到保护牙齿的作用。1

生产方法赤藓糖醇的生产可分为化学合成法和生物合成法2种。

化学合成法

化学合成法可由丁烯二醇与过氧化氢反应,然后将其水溶液与活性镍催化剂混合并加入阻化剂氨水,在0.5MPa左右通氢气,氢化后得赤藓糖醇产品,但化学法的生产效率低,尚未实现工业化生产。

微生物发酵法

发酵法生产赤藓糖醇始于20世纪90年代,国际上均采用微生物发酵法大批量生产赤藓糖醇。生产赤藓糖醇的碳源有烷烃、单糖和双糖等,葡萄糖、果糖、甘露糖和蔗糖都是生产赤藓糖醇的良好碳源,其中D-甘露糖的转化率最高,达31.5%。但是由于成本因素,目前主要以小麦或玉米等淀粉质原料,经酶降解生成葡萄糖,由耐高渗透酵母或其它菌株发酵生产,能生产赤藓糖醇的有假丝酵母属、球拟酵母属、毛孢子菌属、三角酵母属、毕赤酵母属等。赤藓糖醇发酵法工业化生产流程如下:淀粉—液化—糖化—葡萄糖一生产菌株发酵一过滤一色层分离一净化一浓缩一结晶一分离一干燥,最后得到赤藓糖醇,平均收率约50%。研究表明,赤藓糖醇发酵法受多种因素影响,如渗透压的改变明显影响多元醇的生成,无机盐Mn2+、Cu2+能提高赤藓糖醇的产率,氧气、温度都对其产量有影响,与化学合成法相比,发酵法更具有生产优势**。2**

食品上的应用焙烤食品蔗糖、油脂是制作焙烤食品的主要原料,对于形成焙烤食品特有的组织结构、口感和风味具有相当重要的作用,是生产高品质焙烤制品所不可缺少的原料。特别是糖在焙烤食品的生产中,除了能增加甜味、上色、提高保藏性以外,对面团的流变学性质、工艺及产品品质带来很大的影响,糖的适量添加是保证正常的生产工艺及良好的产品品质十分重要的条件。但是随着现代消费者消费水平的提高,对健康意识的增强,这种“高糖高油脂高热量”的产品已不能符合消费者的需要。焙烤产业也向着营养、健康、功能性、低热量等方面发展,低能量、无糖焙烤食品就在这种趋势下应运而生。但是时下有些厂家生产的低能量或无糖焙烤食品只是部分地减少油脂和糖的使用量,但是仅是减少油脂和糖的使用量是不够的,容易造成产品感官品质恶劣,很难被患有糖尿病、肥胖症及其他人群愉快的接受。所以,应该采用膳食纤维、低聚糖、糖醇、类脂肪等替代物,在减少产品能量、满足部分消费者消费需求的同时,尽可能地模拟出油脂和蔗糖的功能,提高产品的可接受性。

蔗糖的替代,时下主要是采取强力甜味剂与低甜度填充型甜味剂或填充剂相结合的方法,比如低聚糖、糖醇等。脂肪的替代,则主要是通过碳水化合物型模拟脂肪来实现。时下来说低DE值麦芽糊精是一个不错的选择,它具有奶油的外官和口感,但是热量相对于油脂来说,却低得多。

要想获得较高质量的功能性或低热量的焙烤产品,赤藓糖醇是一种被证明非常好的原料。它不仅能从物理化学方面取代蔗糖而且还可以带来有利于健康的好处,而且使用赤藓糖醇的焙烤产品与其同样使用蔗糖为原料的产品相比具有更好的结构紧密性和柔软性,并且有着不同的口溶性和细微的颜色差别。在焙烤食品中使用的赤藓糖醇,最好是粉状或者是粒度精细(