由统计学家A.瓦尔德在1950年提出的一种数理统计学的理论,这种理论把数理统计问题看成是统计学家与大自然之间的博弈;用这种观点把各种各样的统计问题统一起来,以对策论的观点来研究。
概述第二次世界大战期间,数理统计学研究中一些重要的新动向,在很大程度上决定了这门学科在战后的发展方向。其中影响最大的是美籍罗马尼亚数学家沃尔德(A。Wald,1902-1950)提出的序贯分析和统计决策理论。
在此以前,人们对数理统计,主要是着眼于其推断的功能,亦即从观测数据出发对总体作出某种论断(见统计推断)。至于由此应该采取什么决策或行动,会产生什么后果,则被认为不属于统计的范畴。瓦尔德的理论则把后面这一部分内容也纳入统计的范围之内,这在数理统计学上是一项革新,有较大的实际意义。
在一个统计问题中,统计工作者掌握的资料是样本X=(x1,x2…,xn),X所来自的总体的分布Fθ中包含的参数θ为未知,而只知道θ所属的集合(为θ所有可能取值的集合,称为参数空间)。但是,采取什么决策最好,则取决于未知的θ值。用形象化的说法,θ是由大自然在参数空间中选定的,人们力图去找到它。大自然掌握了θ的秘密,而这个秘密又通过样本泄露出来,统计工作者的任务就是根据样本 X中所包含的关于θ的信息,去作出良好的决策。例如,一家商店根据抽样决定是否接受一批来货,一个工厂根据市场调查的结果决定某种产品生产多少等,希望所采取的行动取得尽可能好的效果,或者说,使“行动不当”所造成的损失尽可能小。
统计决策三要素可以通过三个要素把一个统计决策问题表达出来。
样本空间样本空间 H与样本分布族{Fθ:θ∈}这个要素规定了问题的概率模型。样本空间是样本可能的取值范围,而样本分布族是样本所可能遵从的分布的集合。
行动空间②行动空间A 它是统计工作者可以采取的单纯策略(或称行动)的集合。例如,设 θ为一维参数,要对θ作区间估计,则实轴上任一区间[α,b]构成一个单纯策略,这时行动空间为所有[α,b]构成的集合。若问题是要检验有关 θ的假设,则行动空间 A由α0(接受假设)和α1(拒绝假设)两个元素构成。
损失函数损失函数L 统计决策理论有一个基本出发点:所采取的行动的后果可以数量化。设参数真值为 θ,统计工作者采取的行动为α,则所遭受的损失可表为 α与θ的函数L(θ,α),称之为损失函数。在一个具体问题中,采取什么损失函数最好,是一个需要进行大量调查研究以至理论工作的问题,这也是在使用决策理论时的一个困难点。
统计决策函数 当三个要素都已给定时,统计工作者采取什么行动,取决于他所掌握的样本。求一个统计决策问题的解,就是制定一个规则,以便对样本空间中每一点,在行动空间中都有一个元素与之对应,也就是找一个定义于样本空间 H而取值于行动空间A的函数或分布函数δ,就按δ采取行动,称δ为决策函数。用对策论的语言,δ就是统计工作者所采取的策略。
选择决策函数的准则对一个统计决策问题,为选定一个较优的决策函数,需要建立反映决策函数优劣的指标。风险函数R(θ,δ)就是这样的指标,定义为R(θ,δ)=Eθ [L(θ,δ(X))],即采取决策函数δ而参数真值为θ时所遭受的平均损失。风险函数愈小,决策函数愈好。在这个原则下,可以引进种种更具体且可行的准则1。
容许性准则容许性准则 设δ为一决策函数,若存在另一决策函数δ,使对一切θ∈有R(θ,δ)≤R(θ,δ),且不等号至少在中的某一点成立,则称δ为不可容许的,否则为可容许的。从风险愈小愈好的原则出发,当δ不可容许时,便没有理由使用它。判定一个决策函数是否可容许,是统计决策理论中一个重要而且困难的问题。在风险函数愈小愈好的原则下,若存在决策函数δ0,对一切θ∈必成立R(θ,δ0)≤R(θ,δ),其中δ为任一决策函数,则δ0是最好的决策函数,称为一致最优决策函数。但这种决策函数一般不存在,因而不得不放宽条件,常采用的有两种方法:一种是不对风险函数在上作逐点比较,而采用某种综合性指标;另一种方法是先从一定角度对允许使用的决策函数加以一定限制,然后再找一致最优的,从而又引出下列准则。
最小化最大准则最小化最大准则 最大风险是一种综合性指标,若存在使最大风险最小的决策函数δ,使得对一切决策函数δ都有:M(δ)≥M(δ),则称δ是最小化最大决策函数,它反映了一种较稳健或保守的策略思想。
贝叶斯准则贝叶斯准则 它以贝叶斯风险为指标,在参数空间上选定一概率测度ξ,称ξ为θ(θ∈)的先验分布,而称为决策函数δ的相对于ξ的贝叶斯风险,它也是一个综合性指标。若对一切决策函数δ都成立,称δ为ξ的贝叶斯决策函数2。
最优同变性准则最优同变性准则 这是一种在限制决策函数有同变性的条件下,求一致最优决策函数的准则。同变性是指当问题由于平移、刻度等变换而发生变化时,相应的决策(对策)也能有同步地变换的性质。例如,在正态总体N(μ,1)中抽样x1,x2,…,xn以估计μ,若将度量原由零点(O)移到с处,则样本在新坐标系下变为x1+с,x2+с…,xn+с,而参数变为μ+с,如果接受“估计结果不应与坐标原点的取法有关”的原则,则所用的决策δ应满足:对任何实数с,有;称这样的 δ在平移变换下有同变性。可以在样本空间H上考虑更复杂的一一变换群,而定义在这个变换群之下的同变性,在所有具有同变性的决策函数类中,风险一致最小的决策函数被称为最优同变决策函数。
在点估计中,限制使用的估计量有无偏性,采用平方损失函数,在这个限制下,一致最优估计量就是一致最小方差无偏估计。这是另一个在限制决策函数下,求一致最优策略的例子。
一旦选定了优良性标准,统计决策问题的解决,就相当于一个数学上的最优化问题。1950年后的几十年来在这方面做了不少工作,这不仅使统计问题有了严格的数学提法,同时也在形式上部分地突出了瓦尔德的想法,把形式不一样的统计问题归并在一个模式下统一处理。决策函数的观点使统计更注重了所采取行动的效果,也使统计问题提法更加多样化,从而开拓了某些新的研究领域,例如前面提到的关于容许性及最小化最大准则的研究。因此,瓦尔德的理论受到统计学界的重视,成为二次大战后统计学史上一个重大事件。但是,在这个问题上的看法也并不一致,英国统计学家M。肯德尔认为“损失的数量化”并非在任何情况下都合理可行,而且他还认为,把统计问题归之于统计工作者与大自然之间的博弈的观点,是值得怀疑的3。
统计中的决策论一些统计工具对于决策过程中的信息收集,风险估计是非常有帮助的。人们可以计算第一类错误和第二类错误发生的概率,从而正确的评估风险损失,做出更好的理性选择。
下面这个例子说明了在审判过程中的决策过程:
|| ||
第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。
在假设检验中,有一种假设称为“零假设”。假设检定的目的就是利用统计的方式,推测零假设是否成立。若零假设事实上成立,但统计检验的结果不支持零假设(拒绝零假设),这种错误称为第一型错误。若零假设事实上不成立,但统计检验的结果支持零假设(接受零假设),这种错误称为第二型错误。
以利用验孕棒验孕为例,此时未怀孕为零假设。若用验孕棒为一位未怀孕的女士验孕,结果是已怀孕,这是第一型错误。若用验孕棒为一位孕妇验孕,结果是未怀孕,这是第二型错误。
本词条内容贡献者为:
王海侠 - 副教授 - 南京理工大学