简介
轴对称图形(axial symmetric figure),数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
直线叫做对称轴(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
举例例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.圆有无数条对称轴,都是经过圆心的直线。
要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。
大写字母A、B、C、D、E、H等等
性质1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
5.图形对称1。
定理定理1: 关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴
上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
生活作用
1、为了美观。比如天安门,对称就显的美观漂亮。
2、保持平衡。比如飞机的两翼。
3、特殊工作的需要。比如五角星,剪纸。
对称方法方法1、找出所给图形的关键点。
2、找出图形关键点到对称轴的距离。
3、找关键点的对称点。
4、按照所给图形的顺序连接各点。
画法1、找出图形的一对对称点。
2、连接对称点。
3、过这条线段的中点作这条线段的垂线。
判定经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。这样就得到了以下性质:
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。
4.对称轴是到线段两端距离相等的点的集合。
区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。现将小学课本中常见的图形归类如下: 既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。