版权归原作者所有,如有侵权,请联系我们

[科普中国]-度量空间

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

概念介绍

现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。

度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的线段的长度。2

定义设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有

(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;

(Ⅱ)(对称性)d(x,y)=d(y,x);

(Ⅲ)(三角不等式)d(x,z)≤d(x,y)+d(y,z)

则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。

详细定义度量空间亦称距离空间。一种拓扑空间,其上的拓扑由距离决定。设R是一个非空集合,ρ(x,y)是R上的二元函数,满足如下条件:

1.ρ(x,y)≥0且ρ(x,y)=0⇔x=y;

2.ρ(x,y)=ρ(y,x);

3.(三角不等式)ρ(x,y)≤ρ(x,z)+ρ(y,z);

则称ρ(x,y)为两点x,y之间的距离,R按距离ρ成为度量空间或距离空间,记为(R,ρ).设A是R的子集,则A按R中的距离ρ也成为度量空间,称为R的(度量)子空间.如果把上述距离的条件1改为ρ(x,y)≥0且ρ(x,x)=0,则称ρ为R上的拟距离.当ρ(x,y)=0时,记x~y.~是R上的一个等价关系,记商集(即等价类全体)为D=R/~,在D上作二元函数ρ~:ρ~(x~,y~)=ρ(x,y)(x∈x~,y∈y~),则ρ~是D上的距离,而(D,ρ~)称为R按拟距离ρ导出的商(度量)空间.

度量空间(R,ρ)中的子集A称为有界的,如果对x0∈R,存在常数M,使ρ(x0,x)≤M对A中的一切x成立.设x0∈R,r>0,则称集合{x|x∈R,ρ(x,x0)0,存在N使得对n>N有d(a_n,a)