理论描述
对于一组给定的样本数据,其平均值为μ,标准偏差为σ,则其整体数据的平均值的100(1-α)%置信区间为(μ-Ζα/2σ , μ+Ζα/2σ) ,其中α为非置信水平在正态分布内的覆盖面积 ,Ζα/2即为对应的标准分数。1
随机区间
对于一组给定的数据,定义 为观测对象,W为所有可能的观测结果,X为实际上的观测值,那么X实际上是一个定义在上,值域在W 上的随机变量。这时,置信区间的定义是一对函数u(.) 以及v(.) ,也就是说,对于某个观测值X=x,其置信区间为。实际上,若真实值为w,那么置信水平就是概率c:
其中U=u(X)和 V=v(X)都是统计量(即可观测的随机变量),而置信区间因此也是一个随机区间:(U,V)。
公式Pr(c1