版权归原作者所有,如有侵权,请联系我们

[科普中国]-图着色问题

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

简介

图的m-着色判定问题——给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色?

图的m-着色优化问题——若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数。求一个图的最小色数m的问题称为m-着色优化问题。1

路线着色问题G是一个有限有向图并且G的每个顶点的出度都是k。G的一个同步着色满足以下两个条件:

1)G的每个顶点有且只有一条出边被染成了1到k之间的某种颜色;

2)G的每个顶点都对应一种走法,不管你从哪里出发,按该走法走,最后都结束在该顶点。

有向图G存在同步着色的必要条件是G是强连通而且是非周期的。一个有向图是非周期的是指该图中包含的所有环的长度没有大于1的公约数。路线着色定理这两个条件(强连通和是非周期)也是充分的。也就是说,有向图G存在同步着色当且仅当G是强连通而且是非周期的。

道路着色问题(Road Coloring Problem)是图论中最著名的猜想之一。通俗的说,这个猜想认为,可以绘制一张“万能地图”,指导人们到达某一目的地,不管他们原来在什么位置。这个猜想最近被以色列数学家艾夫拉汉· 特雷特曼(Avraham Trahtman)在2007年9月证明。

特雷特曼在数学上的这一成果极为令人瞩目,英国《独立报》为此事专门发表了一篇题为“身无分文的移民成了数学超级明星”的文章,给予了高度的评价。

以色列人也为特雷特曼取得的成就感到无比的骄傲。特拉维夫电视台中断了正常的节目播放,以第一时间发布了这一重大消息,连中东其他国家的主流媒体也作了大篇幅的相关报道。

得知特雷特曼解决这一难题的消息后,多年从事路线着色问题研究的加拿大数学家乔尔·弗里德曼说,“路线着色问题的解决令数学共同体非常兴奋。”读过特雷特曼论文的中国数学家和语言学家周海中教授认为,特雷特曼的数学知识非常渊博,解题方法十分巧妙,这一谜题得到破解,无疑是数学史上的一个华彩乐章。

算法点着色问题有简单的时间复杂度为O(3^n)的算法,即设f(S)表示集合的色数,则

算法描述color[n]存储n个顶点的着色方案,可以选择的颜色为1到m。

当t=1时,对当前第t个顶点开始着色:若t>n,则已求得一个解,输出着色方案即可。否则,依次对顶点t着色1-m, 若t与所有其它相邻顶点无颜色冲突,则继续为下一顶点着色;否则,回溯,测试下一颜色。

#include int color[100];bool ok(int k,int c[][100])//判断顶点k的着色是否发生冲突{ int i,j; for(i=1;i