简介及其历史发展
它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象 。最早的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。
中心极限定理有着有趣的历史。这个定理的第一版被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉斯在1812年发表的巨著Théorie Analytique des Probabilités中拯救了这个默默无名的理论。拉普拉斯扩展了棣莫弗的理论,指出二项分布可用正态分布逼近。但同棣莫弗一样,拉普拉斯的发现在当时并未引起很大反响。直到十九世纪末中心极限定理的重要性才被世人所知。1901年,俄国数学家里雅普诺夫用更普通的随机变量定义中心极限定理并在数学上进行了精确的证明。如今,中心极限定理被认为是(非正式地)概率论中的首席定理。
定义独立同分布的中心极限定理设随机变量X1,X2,......Xn,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ20(k=1,2....),则对任意x,分布函数
满足
该定理说明,当n很大时,随机变量 近似地服从标准正态分布N(0,1)。因此,当n很大时, 近似地服从正态分布N(nμ,nσ2).该定理是中心极限定理最简单又最常用的一种形式,在实际工作中,只要n足够大,便可以把独立同分布的随机变量之和当作正态变量。这种方法在数理统计中用得很普遍,当处理大样本时,它是重要工具。1
棣莫佛-拉普拉斯定理设随机变量X(n=1,2,...,)服从参数为n,p(0