真命题与公理、定理真命题
真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立。如:
①两条平行线被第三条直线所截,内错角相等。
②如果a>b,b>c那么a>c。
③对顶角相等。
公理公理是人们在长期实践中总结出来的、正确的命题,它不需要用其他的方法来证明,初一几何中我们学过的主要公理有:
①经过两点有且只有一条直线。
②经过直线外一点有且只有一条直线与已知直线平行。
③同位角相等,两直线平行。
④如果两直线平行,那么同位角相等。
公理的正确性是在实践中得以证实的,是被大家公认的,不再需要其他的证明,并且它可以作为证明其他真命题的依据。如应用公理③可以推导出“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
定理定理是根据公理或已知的定理推导出来的真命题。这些真命题都是最基本的和常用的,所以被人们选作定理。还有许多经过证明的真命题没有被选作定理。所以,定理都是真命题,而真命题不都是定理。例如:“若∠1=∠2,∠2=∠3,那么∠1=∠3”,这就是一个真命题,但不能说是定理。
总之,公理和定理都是真命题,但有的真命题既不是公理。也不是定理。公理和定理的区别主要在于:公理的正确性不需要用推理来证明,而定理需要证明。
命题的相关基本概念命题命题的定义:一般的,在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题。但是原命题正确,它的逆命题未必正确。例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题。命题通常写成“如果......那么......”的形式 。“如果”后面接题设,“那么”后面接结论。
互逆命题互逆命题的定义:如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题。如把其中一个称为原命题,那么另一个称为它的逆命题。其中一个命题称为另一个命题的逆命题。把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题。
逆否命题逆否命题的定义:一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,把这样的两个命题叫做互否命题。如果把其中一个称为原命题,那么另一个就叫做它的否命题。
各种命题间的真假关系四种命题的真假关系如下:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)1。
|| ||