定义
斯特林公式(Stirling's approximation)是一条用来取n的阶乘的近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特林公式十分好用,而且,即使在n很小的时候,斯特林公式的取值已经十分准确。
斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义。在数学分析中,大多都是利用Г函数、级数和含参变量的积分等知识进行证明或推导,很为繁琐冗长。近年来,一些国内外学者利用概率论中的指数分布、泊松分布、χ²分布证之。
形式
或更精确的
或
证明令
则
所以 即 ,即单调递减,又由积分放缩法有
即 ,即
由单调有界定理 的极限存在1,
设
利用Wallis公式,
所以
即
程序斯特林数判断阶乘位数#include
#include
#include
#include
const double e = 2.71828182845;
const double pi = 3.1415926;
int main(void) {
int t, i, f, v;
double a, s;
const double log10_e = log10(e);
const double log10_2_pi = log10(2.0*pi)/2.0;
while (scanf("%d", &t) != EOF && t) {
for (i = 0; i
scanf("%d\n", &v);
if (1 == v) {printf("1\n"); continue;}
a = v;
s = log10_2_pi + (a+0.5)*log10(a) - a * log10_e;
f = ceil(s);
printf("%d\n", f); } }
return 0; }