定义
它有一定的规律性,排列如下(构成图),像上面的1、3、6、10、15等等这些能够表示成三角形的形状的总数量的数,叫做三角形数。
一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数。比如10个点可以组成一个等边三角形,因此10是一个三角形数:
x
x x
x x x
x x x x
x x x x x
开始个18个三角形数是1、3、6、10、15、21、28、36、45、55、66、78、91、105、120、136、153、171……(OEIS中的数列A000217)
第n个三角形数的公式是 或者 。
第n个三角形数是开始的n个自然数的和。
所有大于3的三角形数都不是质数。
开始的n个立方数的和是第n个三角形数的平方(举例:1 + 8 + 27 + 64 = 100 =102)
所有三角形数的倒数之和是2。
任何三角形数乘以8再加1是一个平方数。
一部分三角形数(3、10、21、36、55、78……)可以用以下这个公式来表示:n × (2n + 1);而剩下的另一部分(1、6、15、28、45、66……)则可以用n × (2n - 1)来表示。
一种检验正整数x是否三角形数的方法,是计算:。
如果n是整数,那么x就是第n个三角形数。如果n不是整数,那么x不是三角形数。这个检验法是基于恒等式8Tn + 1 = S2n + 1.
特殊的三角形数
55、5,050、500,500、50,005,000……都是三角形数。
第11个三角形数(66)、第1111个三角形数(617,716)、第111,111个三角形数(6,172,882,716)、第11,111,111个三角形数(61,728,399,382,716)都是回文式的三角形数,但第111个、第11,111个和第1,111,111个三角形数不是。
和其他数的关系
四面体数是三角形数在立体的推广。
两个相继的三角形数之和是平方数。
三角平方数是同时为三角形数和平方数的数。
三角形数属於一种多边形数。
所有偶完美数都是三角形数。
任何自然数是最多三个三角形数的和。高斯发现了这个规律。他在1796年7月10日在日记中写道:EYPHKA! num = Δ + Δ + Δ
构成图o n=1 s=1
o o n=2 s=3
o o o n=3 s=6
o o o o n=4 s=10
o o o o o n=5 s=15
……
根据自然数列的求和公式,对于第n项的三角形数,可以得到其计算公式为:。
应用1)前n个三角形数的和:T(n)=s(1)+s(2)+…+s(n)
由,
得到:.。
2)判断一个数是否为三角形数:对任给一个正整数K,则若为三角形数,有:得:n*(n+1)=2K。
从而:[即2K开根号]