版权归原作者所有,如有侵权,请联系我们

[科普中国]-石墨层间化合物

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

所谓石墨层问化合物,就是在插层剂的作用下,化学反应物质侵入石墨层问,并在层间与碳原子键合,形成一种并不破坏石墨层状结构的化合物(Graphite intercalation compounds,简称GICs )。

石墨经过化学处理制成的层间化合物,其性质大大优于石墨,具有耐高温、抗热震、防氧化、耐腐蚀、润滑性和密封性等优良性能或功能,是制备新型导电材料、电池材料、储氢材料、高效催化剂、柔性石墨、密封材料的原料,其应用范围已扩大到冶金、石油、化工、机械、航空航天、原子能、新型能源等领域。1

介绍石墨晶体是碳原子以共价键结合成的六角环形(碳原子间距为0.142nm)片状体的层叠结构,层面与层面之间距离较大(0.335nm),利用化学或物理的方法在石墨晶体的层面间插入各种分子、原子或离子,而不破坏其二维结构,只是使其层面间距增大,形成一种石墨特有的化合物称之为石墨层间化合物(也称石墨插层化合物)。已经成为近代炭素材料科学的一个分支,其中膨胀石墨(石墨层间化合物一种,见膨胀石墨)及从膨胀石墨进一步加工制成的柔性石墨材料(见柔性石墨)已经形成一定生产规模。2

石墨层间化合物的分类石墨层间化合物可以分为:金属—石墨及碱土金属—石墨层间化合物、卤族元素—石墨层间化合物、金属卤化物—石墨层间化合物和三元石墨层间化合物等4类。

(1)金属—石墨层间化合物及碱土金属—石墨层间化合物。碱金属中的K、Rb、Cs的饱和组成为MC8化合物,Li的饱和组成是LiC6,但Na的饱和组成是NaC64,碱土金属Ca、Sr、Ba和Li一样生成MC6型化合物。在表示石墨层间化合物的结构时一般使用“阶数”,如图1所示,它表示层间化合物C8K的结构示意图,图2为石墨晶格间吸收钾原子形成多种层间化合物的不同结构示意图。层间化合物有几阶结构取决于插入什么样的化学物质,例如已知K、Rb,CS存在1~15阶的石墨层间化合物,而Ca、Sr、Ba仅生成一阶化合物,而得不到高阶石墨层间化合物。

(2)卤族元素—石墨层间化合物。卤族元素中的Br2易形成石墨层间化合物,其饱和组成为二阶的C8Br,迄今尚未发现一阶结构。插入Br2的石墨层间化合物在与之平衡的Br2蒸气中稳定存在,但一旦去除溴蒸气则容易分解形成残留化合物。一般而言,将石墨层间化合物在空气中放置分解而得到的物质等总称为残留化合物,从结构上它和原来的石墨几乎没有变化,但其缺陷程度增加,并可能和高阶结构混合存在等等,形式各种各样。

(3)金属卤化物—石墨层间化合物。由氯化铁形成的石墨层间化合物很早即已知晓,其他许多金属氯化物也可生成石墨层间化合物。但是能生成金属溴化物的石墨层间化合物比较少,据报道可形成石墨层间化合物的有Al、Mn、Fe、Co、Ni、Ga、Cd、Au、Hg、Ti、U等的溴化物。以AsF5和SbF5为代表的较多氟化物可生成石墨层间化合物。最近由于研究工作的深入,如ZnCl2、MnCl2及NaCl等过去认为无反应物生成的卤化物,采用特殊方法也可生成石墨层间化合物。

(4)三元石墨层间化合物。两种以上的化学物质被插入而形成的石墨层间化合物较多,存在着两种碱金属、碱金属与氢(NH3、苯)等组成的系列,两种氯化物、氯化物与酸等相当多的组合。

石墨层间化合物的合成石墨层间化合物的合成方法很多,几种有代表性的合成方法介绍如下:

(1)气相恒压反应法。在气相恒压反应法中,石墨试样要和插层的物质分别放在反应管中的不同部位,并保持不同的温度。设石墨的温度为Tg,插层反应物的温度为Ti,使石墨与反应物气体接触并发生反应。Tg一般常比Ti高,以防止反应物从石墨试样中析出。Ti由反应物的蒸汽压决定,适当选择Tg与Ti之差,可确定生成的石墨层间化合物的组成和阶结构。

(2)混合法及浸渍法。混合法是将石墨与反应物混合的粉末进行热处理的方法,而浸渍法则是将石墨浸入熔融盐中的方法,二者的反应物的蒸汽压低或希望在温和条件下发生反应等场合较为有效。该方法反应速度快,在较短的时间内可获得所需要的层间化合物,但对去除残余的未反应物比较困难,是其缺点。使用混合熔融盐能够控制所获得的石墨层间化合物的活性,使反应在低温下进行成为可能而且含氯化物的石墨层间化合物经过水洗也几乎不分解,从而未反应的氯化物也比较容易洗去,因此作为大批量的合成方法非常有用。

(3)电化学方法。其代表性反应物为硫酸。以石墨为阳极,在浓硫酸中进行电解,发生硫酸的插层反应。从通电量的多少可以估算插入的硫酸量,并且电极电位与阶数结构对应,因此插层过程容易监控,这是此方法的优点。最近,由于Li二次电池的开发受到重视,关于Li在石墨(炭)中电化学插层的研究非常活跃。

石墨层间化合物的用途石墨层间化合物的原料主要是天然鳞片石墨,但石墨层间化合物由于晶体结构上的改变已是完全不同于母体天然鳞片石墨的一种新物质。根据插入物质的性质和插层阶数的不同,石墨层间化合物增加了许多天然鳞片石墨所没有的特性。主要如:高导电性、高效催化性、高吸附性、压缩复原性和自润滑性等。因此石墨层间化合物可以用作高导电材料、电池材料、高效催化剂、贮氢材料等。利用石墨层间化合物的插入和分解反应的特点,已经成功的制造了各种一次或二次电池,特别是二次锂电池的开发,具有极高的商业价值。又如氟化石墨的润滑性、防水性好,可以作为润滑剂加入润滑脂、润滑油中或添加到充当防水材料的石蜡中,还可用作脱模剂和电镀共析剂。近期氟化石墨与锂组合的高能干电池引起重视,作为新一代二次电池具有高能量密度,高工作电压,循环性好等特点。利用多孔炭材料进行插入反应可制造大功率电容器。又如氧化石墨(也称石墨酸)在150℃以上急剧加热时,会引起爆炸性分解,可制成荧光屏用炭膜或特殊的黏结剂。最近中国清华大学首创将膨胀石墨用于医疗方面,膨胀石墨作为医用敷料,对治疗烧伤有显著疗效,其对烧伤面的吸附能力比纱布高3~5倍,并且无急、慢毒副作用,也无致敏、致癌变作用。膨胀石墨还有卓越的吸附能力,可对海上原油泄漏及生活废水处理方面具有重要意义。3

本词条内容贡献者为:

包申旭 - 副教授 - 武汉理工大学资源与环境工程学院