版权归原作者所有,如有侵权,请联系我们

[科普中国]-管线钢

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

管线钢是指用于输送石油、天然气等管道所用的一类具有特殊要求的钢种,根据厚度和后续形成等方面的不同,可由热连轧机组、炉卷轧机或中厚板轧机生产,经螺旋焊接或UOE直缝焊接形成大口径钢管。

简介管道运输与铁路运输、公路运输、水路运输和航空运输并列为现代五大交通运输方式。从最初的工业管道至今,油、气管道建设经历了近两个世纪的发展。我国管线钢的生产和应用起步较晚,1985年前还没有真正的管线钢生产。然而,近年来,我国管线钢的研制、开发和应用得到了快速发展,通过西部管道、西气东输管道和西气东输二线管道等重大管道工程的推动,又先后完成了X60、X70和X80管线钢的生产和应用,并获得了X100和x120的研究成果。

管线钢的组织类型管线钢的组织结构是决定其使用性能和安全服役的根据,目前,根据显微组织可将管线钢分为以下4类:

1、铁索体-珠光体管线钢

铁素体一珠光体管线钢是20世纪60年代以前开发的管线钢所具有的基本组织形态,X52以及低于这种强度级别的管线钢均属于铁素体一珠光体,其基本成分是碳和锰,通常碳含量(质量分数,下同)为0.10%一0.20%,锰含量为1.30%~1.70%,一般采用热轧或正火热处理工艺生产。当要求较高强度时,可取碳含量上限,或在锰系的基础上添加微量铌和钒。通常认为,铁素体一珠光体管线钢具有晶粒尺寸约为7μm的多边形铁素体和体积分数约30%的珠光体。常见的铁素体一珠光体管线钢有5LB、X42、X52、X60、X60和X70。

2、针状铁素体管线钢

针状铁素体管线钢的研究始于20世纪60年代末,并于70年代初投入工业生产。当时,在锰一铌系基础E发展起来的低碳.锰一钼一铌系微合金管线钢,通过钼的加入,降低相变温度以抑制多边形铁素体的形成,促进针状铁素体转变,并提高碳、氮化铌的沉淀强化效果,因而在提高钢强度的同时,降低了韧脆转变温度。这种钼合金化技术已有近40年的生产实践。近年来,另一种获取针状铁素体的高温工艺技术正在兴起,它通过应用高铌合金化技术,可在较高的轧制温度条件下获取针状铁素体。常见的针状铁素体管线钢有X70、X80。

3、贝氏体一马氏体管线钢

随着高压、大流量天然气管线钢的发展和对降低管线建没成本的追求,针状铁素体组织已不能满足要求。20世纪后期,一种超高强度管线钢应运而生。其典型钢种为X100和X120。1988年日本SMI公司首先报道了,X100的研究成果。经历了,多年的研究和开发,X100钢管于2002年首次投入工程试验段的敷设。美国ExxonMobil公司于1993年着手X120管线钢的研究,并于1996年与日本SMI公司和NSC公司合作,共同推进X120的研究进程,2004年X120钢首次投人丁程试验段的敷设。

贝氏体一马氏体管线钢在成分设计上,选择了碳一锰—铜—镍—钼—铌—钒—钛—硼的最佳配合。这种合金设计思想充分利用了硼在相变动力学上的重要特征。加入微量的硼(ωB=0.0005%~0.003%),可明显抑制铁素体在奥氏体晶界上形核,使铁素体曲线明显右移。同时使贝氏体转变曲线变得扁平,即使在超低碳(ωC=0.003%)情况下,通过在TMCP中降低终冷温度(20℃/s),也能获得下贝氏体一板条马氏体组织。常见的贝氏体—马氏体(B—M)管线钢有X100、X120。

4、回火索氏体管线钢

随着社会的发展,需要管线钢具有更高的强韧性,如果控轧控冷技术满足不了这种要求,可以采刚淬火+回火的热处理工艺,通过形成回火索氏体组织来满足厚壁、高强度、足够韧性的综合要求。在管线钢中,这种同火索氏体也称为同火马氏体,是超高强度管线钢X120的一种组织形态。1

管线钢一般技术要求现代管线钢属于低碳或超低碳的微合金化钢,是高技术含量和高附加值的产品,管线钢生产几乎应用了冶金领域近20多年来的一切工艺技术新成就。目前管线工程的发展趋势是大管径、高压富气输送、高冷和腐蚀的服役环境、海底管线的厚壁化,因此目前对管线钢的性能要求主要有以下几方面:

(1)高强度。管线钢的强度指标主要有抗拉强度和屈服强度。在要求高强度的同时,对管线钢的屈强比(屈服强度与抗拉强度之比)也提出了要求,一般要求在0.85~0.93的范围内。

(2)高冲击韧性。管线钢要求材料应具有足够高的冲击韧性(起裂、止裂韧性)。对于母材,当材料的韧性值满足止裂要求时,其韧性一般也能满足防止起裂的要求。

(3)低的韧脆转变温度。严酷的地域、气候条件要求管线钢应具有足够低的韧脆转变温度。D州的剪切面积已经成为防止管道脆性破坏的主要控制指标。一般规范要求在最低运行温度F试样断口剪切面积不小于85%。

(4)优良的抗氢致开裂(HIC)和抗硫化物应力腐蚀开裂(SSCC)性能。

(5)良好的焊接性能。钢材良好的焊接性对保证管道的整体性和野外焊接质量至关重要。近代管线钢的发展最显著的特征之一就是不断降低钢中的碳含量,随着碳含量的降低,钢的焊接性得到明显的改善。添加微量钛,可抑制焊接影响区韧性的下降,达到改善焊接性能的目的。这其中的难点和重点是高韧性。随着石油、天然气输送的不断发展,对石油管线钢性能的要求不断提高,尤其是对韧性要求的提高。这些性能的提高就要求把钢材中杂质元素C、S、P、O、N、H含量降到很低的水平。高强度、高韧性是通过控冷技术得到贝氏体铁素体组织来保证的,同时应降低钢中碳的含量和尽可能去除钢中的非金属夹杂物,提高钢的纯净度。其中要求碳含量不高于0.09%、硫含量低于0.005%、磷含量低于0.01%、氧含量不高于0.002%;输送酸性介质时管线钢要抗氢脆,要求氢含量低于0.0002%;对于钢中的夹杂物,最大直径要小于100μm,并要求控制氧化物形状,消除条形硫化物夹杂的影响。2

管线钢发展的动态和趋势早期管道离中心城市较近,地理环境和社会依托条件都较优越。如今,新发现的油、气田大都在边远地区和地理、气候条件恶劣的地带,如向西欧市场供气的阿尔及利亚气田,可向远东市场供气的西伯利亚气田,可向美国市场供气的北阿拉斯加气田和我国东部、西北部油气田等。随着边远油气田、极地油气田、海上油气田和酸性油气田等恶劣环境油气田的开发,油气管道工程面临着高压输送和低温、大位移、深海、酸性介质等恶劣环境的挑战。为保证管道建设和运行的积极性和安全性,管线钢的基本要求和发展趋势是高强度、高韧性、大变形性、厚壁化、高腐蚀性和好的焊接性。1

本词条内容贡献者为:

王沛 - 副教授、副研究员 - 中国科学院工程热物理研究所