版权归原作者所有,如有侵权,请联系我们

[科普中国]-诱导公式

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。 诱导公式有六组共54个。

定义常用的诱导公式有以下六组:12

公式一终边相同的角的同一三角函数的值相等。

设α为任意锐角,弧度制下的角的表示:

角度制下的角的表示:

sin (α+k·360°)=sinα(k∈Z).

cos(α+k·360°)=cosα(k∈Z).

tan (α+k·360°)=tanα(k∈Z).

cot(α+k·360°)=cotα (k∈Z).

sec(α+k·360°)=secα (k∈Z).

csc(α+k·360°)=cscα (k∈Z).3

公式二π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:

sin(π+α)=-sinα.

cos(π+α)=-cosα.

tan(π+α)=tanα.

cot(π+α)=cotα.

sec(π+α)=-secα.

csc(π+α)=-cscα.

角度制下的角的表示:

sin(180°+α)=-sinα.

cos(180°+α)=-cosα.

tan(180°+α)=tanα.

cot(180°+α)=cotα.

sec(180°+α)=-secα.

csc(180°+α)=-cscα.3

公式三任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα.

cos(-α)=cosα.

tan(-α)=-tanα.

cot(-α)=-cotα.

sec(-α)=secα.

csc (-α)=-cscα.

公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(π-α)=sinα.

cos(π-α)=-cosα.

tan(π-α)=-tanα.

cot(π-α)=-cotα.

sec(π-α)=-secα.

csc(π-α)=cscα.

角度制下的角的表示:

sin(180°-α)=sinα.

cos(180°-α)=-cosα.

tan(180°-α)=-tanα.

cot(180°-α)=-cotα.

sec(180°-α)=-secα.

csc(180°-α)=cscα.3

公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(2π-α)=-sinα.

cos(2π-α)=cosα.

tan(2π-α)=-tanα.

cot(2π-α)=-cotα.

sec(2π-α)=secα.

csc(2π-α)=-cscα.

角度制下的角的表示:

sin(360°-α)=-sinα.

cos(360°-α)=cosα.

tan(360°-α)=-tanα.

cot(360°-α)=-cotα.

sec(360°-α)=secα.

csc(360°-α)=-cscα.3

公式六π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)

π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2+α)=cosα.

cos(π/2+α)=—sinα.

tan(π/2+α)=-cotα.

cot(π/2+α)=-tanα.

sec(π/2+α)=-cscα.

csc(π/2+α)=secα.

角度制下的角的表示:

sin(90°+α)=cosα.

cos(90°+α)=-sinα.

tan(90°+α)=-cotα.

cot(90°+α)=-tanα.

sec(90°+α)=-cscα.

csc(90°+α)=secα.3

⒉ π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2-α)=cosα.

cos(π/2-α)=sinα.

tan(π/2-α)=cotα.

cot(π/2-α)=tanα.

sec(π/2-α)=cscα.

csc(π/2-α)=secα.

角度制下的角的表示:

sin (90°-α)=cosα.

cos (90°-α)=sinα.

tan (90°-α)=cotα.

cot (90°-α)=tanα.

sec (90°-α)=cscα.

csc (90°-α)=secα.3

⒊ 3π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2+α)=-cosα.

cos(3π/2+α)=sinα.

tan(3π/2+α)=-cotα.

cot(3π/2+α)=-tanα.

sec(3π/2+α)=cscα.

csc(3π/2+α)=-secα.

角度制下的角的表示:

sin(270°+α)=-cosα.

cos(270°+α)=sinα.

tan(270°+α)=-cotα.

cot(270°+α)=-tanα.

sec(270°+α)=cscα.

csc(270°+α)=-secα.3

3π/2-α与α的三角函数值之间的关系12

弧度制下的角的表示:

sin(3π/2-α)=-cosα.

cos(3π/2-α)=-sinα.

tan(3π/2-α)=cotα.

cot(3π/2-α)=tanα.

sec(3π/2-α)=-cscα.

csc(3π/2-α)=-secα.

角度制下的角的表示:

sin(270°-α)=-cosα.

cos(270°-α)=-sinα.

tan(270°-α)=cotα.

cot(270°-α)=tanα.

sec(270°-α)=-cscα.

csc(270°-α)=-secα.3

记忆规律公式一到公式五函数名未改变, 公式六函数名发生改变。

公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。4

上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)