麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
麦克斯韦方程组(英语:Maxwell's equations)是一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。该方程组由四个方程组成,分别是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解释时变磁场如何产生电场的法拉第感应定律,以及说明电流和时变电场怎样产生磁场的麦克斯韦-安培定律。麦克斯韦方程组是因英国物理学家詹姆斯·麦克斯韦而命名。麦克斯韦在19世纪60年代构想出这方程组的早期形式。
在不同的领域会使用到不同形式的麦克斯韦方程组。例如,在高能物理学与引力物理学里,通常会用到时空表述的麦克斯韦方程组版本。这种表述建立于结合时间与空间在一起的爱因斯坦时空概念,而不是三维空间与第四维时间各自独立展现的牛顿绝对时空概念。爱因斯坦的时空表述明显地符合狭义相对论与广义相对论。在量子力学里,基于电势与磁势的麦克斯韦方程组版本比较获人们青睐。
自从20世纪中期以来,物理学者已明白麦克斯韦方程组不是精确规律,精确的描述需要借助更能显示背后物理基础的量子电动力学理论,而麦克斯韦方程组只是它的一种经典场论近似。尽管如此,对于大多数日常生活中涉及的案例,通过麦克斯韦方程组计算获得的解答跟精确解答的分歧甚为微小。而对于非经典光、双光子散射、量子光学与许多其它与光子或虚光子相关的现象,麦克斯韦方程组不能给出接近实际情况的解答。
从麦克斯韦方程组,可以推论出光波是电磁波。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。得益于这一组基础方程以及相关理论,许多现代的电力科技与电子科技得以被发明并快速发展。
概论麦克斯韦方程组是由四个一阶线性偏微分方程共同组成。虽然一阶与线性都是良好的数学性质,除了具有高度对称性的案例以外,通常找不到它的解析解,因此必须使用数值方法来找到它的数值解。但由于电动力学是一种线性理论,可以利用叠加原理来求解。
高斯定律高斯定律描述电场是怎样由电荷生成。电场线开始于正电荷,终止于负电荷。从估算穿过某给定闭曲面的电场线数量,即电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,该定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷数量之间的关系。
根据高斯磁定律,磁场线没有初始点也没有终止点,而是形成循环或延伸到无穷远。示意图展示由流动于圆环导体的电流所形成的磁场线。
高斯磁定律高斯磁定律表明,磁单极子(磁荷)并不存在于宇宙。在实验方面,物理学者迄今仍尚未发现磁单极子存在的明确证据。由物质产生的磁场是被一种称为偶极子的位形所生成。磁偶极子最好是用电流回路来表示。磁偶极子好似不可分割地被束缚在一起的正磁荷和负磁荷,其净磁荷为零。磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,也必须从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,磁场是一个螺线矢量场。
法拉第感应定律法拉第感应定律描述随时间变化的磁场怎样生成(感应出)电场。电磁感应是许多发电机的运作原理。例如,一块旋转的条形磁铁会产生时变磁场,这又会生成电场,使得邻近的闭循环因而感应出电流。
麦克斯韦-安培定律麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(最初安培定律描述的方法)产生,另一种是靠随时间变化的电场(麦克斯韦修正项描述的方法)产生。在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,如果时变电场恰好产生了变化的磁场,则根据这两个方程,这种相互产生的电场和磁场(即电磁波)将可以自我持续在空间里传播(更详尽内容,请参阅条目电磁波方程)。
方程组汇览这里展示出麦克斯韦方程组的两种等价表述:微观表述与宏观表述。
微观表述专门计算在真空里原子尺度的有限源电荷与有限源电流所产生的电场与磁场。物质可以视为由点电子与点原子核所组成,而内部其它大部分空间都是真空。但是,由于电子与原子核的数量很大,实际而言,无法一一纳入计算。事实上,经典电磁学也不需要过度精确的答案。使用微观麦克斯韦方程组有两个主要目的,一是推导出宏观麦克斯韦方程组,二是从原子性质估算出宏观物质参数,例如电容率、磁导率等等。微观表述可以给出很多宏观表述所无法给出的极具价值的信息。
宏观表述不将物质内部的原子结构纳入考量,而是将物质视为一种连续性介质,其性质决定于电容率、磁导率等等宏观物质参数。从做实验可以获得宏观物质参数与物质的本质、密度、温度等等的关系。宏观麦克斯韦方程组可以用来预测带电粒子、电场与磁场的平均性质。采用这种表述会使得在介电质或磁化物质内各种物理计算更加简易。
采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同的常数会出现在方程内部不同位置。国际单位制(SI)是最常使用的单位制,在工程学、化学领域大多都采用这种单位制,大学物理教科书也几乎都使用这种单位制。其它常用的单位制有高斯单位制、洛伦兹-亥维赛单位制和普朗克单位制。由厘米-克-秒制衍生的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。稍后会详细阐述高斯单位制。洛伦兹-亥维赛单位制也是衍生于厘米-克-秒制,主要用于粒子物理学。普朗克单位制是一种自然单位制,其单位都是根据大自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非常有用的工具,能够在理论论述里给出很大的启示。
在本条目里,除非特别指出,所有方程都采用国际单位制。
在真空里的麦克斯韦方程组
这种形式的麦克斯韦方程组又称为“微观麦克斯韦方程组”,可以用来推导出宏观麦克斯韦方程组,也可以用来找出原子性质与宏观性质两者之间的关联。
微观尺度与宏观尺度在经典电磁学里,微观尺度指的是系统尺寸的数量级大于10米的尺度范围。满足微观尺度,电子和原子核可以视为点电荷,微观麦克斯韦方程组成立;否则,必需将原子核内部的电荷分布纳入考量。在微观尺度计算出来的电场与磁场仍旧变化相当剧烈,空间变化的距离数量级小于10米,时间变化的周期数量级在10至10秒之间。因此,从微观麦克斯韦方程组,必需经过经典平均运算,才能得到平滑、连续、缓慢变化的宏观电场与宏观磁场。宏观尺度的最低极限为10米。这意味着电磁波的反射与折射行为可以用宏观麦克斯韦方程组来描述。以这最低极限为边长,体积为10立方米的立方体大约含有10个原子核和电子。这么多原子核和电子的物理行为,经过经典平均运算,足以平缓任何剧烈的涨落。根据可靠文献记载,经典平均运算只需要在空间作平均运算,不需要在时间作平均运算,也不需要考虑到原子的量子效应。
经典平均运算是一种比较简单的平均程序,给定函数,这函数的空间平均定义为
其中,是平均运算的空间,是权重函数。
很多函数都可以选为优良的权重函数,高斯函数正是一例:
最早出现的麦克斯韦方程和其相关理论是为宏观物质设计的,是一种现象学。在那时候,物理学者并不清楚造成电磁现象的基本原因。后来,按照物质的粒子绘景,才推导出微观麦克斯韦方程。二十世纪前半期,在量子力学、相对论、与粒子物理学领域的突破与发展,其崭新理论与微观麦克斯韦方程组相结合,成为建立量子电动力学的关键基石。这是物理学中最准确的理论,所计算出的结果能够精确地符合实验数据。
数学性质麦克斯韦方程组形似超定组:它只涉及到六个未知量(矢量电场、磁场各拥有三个未知量,电流与电荷不是未知量,而是自由设定并符合电荷守恒的物理量),但却是由八个方程所组成(两个高斯定律共有两个方程,法拉第定律与麦克斯韦-安培定律各有三个方程)。经过仔细分析,即可明白,实际上并不是这么简单。
麦克斯韦方程组的方程具有“独立性”──从方程组内的任何一个或多个方程,都不能推导出方程组内的任何其它方程。这意味着麦克斯韦方程组不是超定组,其内中没有重复任何功能的方程。麦克斯韦方程组、洛仑兹力方程与牛顿第二运动定律总合起来具有“完备性”,他们可以说明所有经典电动力学的现象,不需要使用到任何其它方程。在某区域内,给定适当的初始条件与边界条件,则麦克斯韦方程组的解答具有“唯一性”,即每一个应变量只能有一种函数形式,其内部只含有常数或自变量,不含有任何其它应变量。
法拉第定律与麦克斯韦-安培定律共同主导著在空间内电磁场随着时间流易的演化,而高斯定律与高斯磁定律则是约束方程,电磁场必须在所有时间与空间遵守这两个约束方程。理论而言,可以假设某种电磁场在所有空间服从法拉第定律与麦克斯韦-安培定律的指挥,反之,如果他们不遵守高斯定律与高斯磁定律的约束,则它们无法实际存在于真实世界。换句话说,法拉第定律与麦克斯韦-安培定律会给出额外的解答,其不符合高斯定律与高斯磁定律的约束。
描述在物质里的电磁性质束缚电荷和束缚电流主条目:电流密度、束缚电荷和束缚电流
左半图展示一群微观电偶极子,它们所产生的电场,可以视为分别位于最上端与最下端的表面电荷所产生的电场。右半图展示一群微观电流回路共同形成了一个宏观电流回路。假若微观电流回路均匀分布,则位于内部的电流回路的贡献会相互抵销,但是位于边界的电流回路不会被抵销,因此会形成宏观的电流回路。
假设,施加外电场于介电质。施加这个电场的结果是,介电质的分子会形成一个微观的电偶极子,其伴随着电偶极矩。分子的原子核会朝着电场的方向稍微迁移位置,而电子则会朝着相反方向稍微迁移位置。这形成了介电质的电极化。如右图的理想状况所示,虽然,所有涉及的电荷都仍旧束缚于其原本的分子,由于这些微小迁移所造成的电荷分布,变得好像是在介电质的一边形成了一薄层正表面电荷,在另一边又形成了一薄层负表面电荷。电极化强度定义为介电质内部的的电偶极矩密度,也就是单位体积的电偶极矩。在介电质内部,假设电极化强度是均匀的,则宏观的面束缚电荷只会出现于介电质表面,即进入或离开介电质之处;否则,假设是不均匀的,则介电质内部也会出现束缚电荷。
与静电学有些类似的是,在静磁学里,假设施加外磁场于物质,响应这动作,物质会被磁化,原子成分会显示出磁矩。在本质上,这磁矩与原子的各个亚原子粒子的角动量有关。其中,响应最显著的是电子。这角动量的连结,不禁令人联想到一副图画,在图画中,磁化物质变成了一群微观的束缚电流回路。虽然每一个电荷只是移动于其原子的微观回路,一群微观的束缚电流回路聚集在一起会形成宏观的束缚电流循环流动于物质的表面。这些束缚电流可以用磁化强度来描述。磁化强度定义为磁偶极矩在一个磁化物质内的密度,也就是单位体积的磁偶极矩。
这些非常复杂与粗糙的束缚电荷与束缚电流的物理行为,在宏观尺度,可以分别以电极化强度与磁化强度来表达。电极化强度与磁化强度分别将这些束缚电荷与束缚电流以恰当的尺度做空间平均,这样,可以除去单独整体原子形成的凹凸粗糙结构,但又能够显示出强度随着位置而变化的物理性质。由于所有涉及的矢量场都已做过恰当体积的空间平均,宏观麦克斯韦方程组忽略了微观尺度的许多细节。不过,对于了解物质的宏观尺度性质,这些细节可能不具什么重要性1。
本词条内容贡献者为:
李雪梅 - 副教授 - 西南大学