平均曲率为零的曲面。平均曲率定义为:其中 表示两个主曲率。给定一条闭曲线,可以设想蒙在这条闭曲线上的所有曲面中,有一个面积最小者,这个具有最小面积的曲面正是极小曲面。平面是仅有的极小可展曲面。除平面外,旋转极小曲面都是悬链面,直纹极小曲面都是正螺面。
极小曲面的经典例子包括:
1)欧几里得平面,无特别约束条件下最平常的极小曲面;
2)悬链曲面:由悬链线围绕其水平准线旋转而得到的曲面。这是最早发现的“不寻常”的极小曲面。悬链曲面状的皂液膜可以由将两个等大的圆环紧贴放入肥皂水中,拿出后再缓慢分开得到;
3)螺旋曲面:一个线段沿着垂直于其中点的直线匀速螺旋上升时扫过的曲面。这是继悬链曲面后发现的第二种不寻常的极小曲面;
4)恩内佩尔曲面。
定义给定一个嵌入曲面,或更一般的,一个浸入曲面(其边界一般固定,但不一定有界),定义其平均曲率如下:
令 是曲面 上一点,考虑 上过 的所有曲线 。每条这样的 在 点有一个伴随的曲率 。在这些曲率 中,至少有一个极大值 与极小值 ,这两个曲率 称为 的主曲率。
的平均曲率是两个主曲率的平均值,由欧拉公式其实也是所有曲率的平均值,故有此名。
而极小曲面是指每一点上的平均曲率都是0的曲面。这种曲面的研究始于有关满足一定的约束条件(比如边界固定或容纳体积满足一定条件)下表面积最小的曲面,因此被称为“极小曲面”。实际上极小曲面所囊括的内涵比此类最小面积曲面更广泛。极小曲面的定义还可以扩展到恒定平均曲率曲面,即曲面上由平均曲率等于某个常数的点组成的子曲面。当这个常数等于零的时候, 恒定平均曲率曲面就是极小曲面。极小曲面是平均曲率流的临界点1。
与布朗过程的联系极小曲面上的布朗过程可以用于某些极小曲面相关定理的概率证明。
相关研究著名的普拉托实验是把围成封闭曲线的金属丝放入肥皂溶液中,然后取出来,由于表面张力的作用,在它上面就蒙有表面积最小的薄膜。这种表面积最小的曲面就是所谓极小曲面,从数学上求这膜曲面的问题称为普拉托问题。这个问题可以用变分法来解2。
从变分学观点看,可以考虑以已知闭曲线Γ为固定边界的曲面的法向变分。由欧拉-拉格朗日方程(见变分法),对于任何这样的变分,曲面面积达到临界值的充要条件是曲面的平均曲率为0。因此,通常就用这个几何条件来定义极小曲面。
在三维欧氏空间中,若一张曲面可用方程来表示,则称它为图,或非参数化曲面。由极小条件,中极小图的满足下述二阶非线性椭圆型微分方程:
通常称它为极小曲面方程。