基本定义
区间估计,是参数估计的一种形式。1934年,由统计学家J.奈曼所创立的一种严格的区间估计理论。置信系数是这个理论中最为基本的概念。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。
用数轴上的一段距离或一个数据区间,表示总体参数的可能范围.这一段距离或数据区间称为区间估计的置信区间。1
出发点区间估计(interval estimation)是从点估计值和抽样标准误出发,按给定的概率值建立包含待估计参数的区间.其中这个给定的概率值称为置信度或置信水平(confidence level),这个建立起来的包含待估计参数的区间称为置信区间(confidence interval),指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。划定置信区间的两个数值分别称为置信下限(lower confidence limit,lcl)和置信上限(upper confidence limit,ucl)
常见形式简介区间估计,区间估计的区间上、下界通常形式为:“点估计±误差”
“总体均值”的区间估计
符号假设总体均值:μ
总体方差:σ
样本均值:x* =(1/n)×Σ(Xi)
样本方差:s* =(1/(n-1))×Σ(Xi-x*)^2
置信水平:1-α
显著水平:α
问题已知n个样本数据Xi (i=1,2,...,n),如何估计总体的均值?
首先,引入记号:
σ'=σ/sqrt(n)
s'=s*/sqrt(n)
然后,分情况讨论:
情况1 小样本(n