版权归原作者所有,如有侵权,请联系我们

[科普中国]-变压吸附

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

变压吸附概况

1960年Skarstrom提出PSA专利,他以5A沸石分子筛为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。80年代,变压吸附技术的工业应用取得了突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型吸附剂碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。

随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。2

变压吸附发展史变压吸附空分制氧始创于20世纪60年代初(Skarstrom, 1960; Guerin de Montgarenil & Domine, 1964),并于70年代实现工业化生产。在此之前,传统的工业空分装置大部分采用深冷精馏法(简称深冷法)

80年代以来至今CaX和LiX等高吸附分离性能的沸石分子筛的相继开发利用和工艺流程的改进,使得变压吸附空分技术得到迅速地发展,与深冷空分装置相比,PSA过程具有启动时间短和开停车方便、能耗较小和运行成本低、自动化程度高和维护简单、占地面积小和土建费用低等特点。在不需要高纯氧的中小规模(小于100吨/天,相当于3000Nm3/h )氧气生产中比深冷法更具有竞争力。广泛的应用于电炉炼钢、有色金属冶炼、玻璃加工、甲醇生产、炭黑生产、化肥造气、化学氧化过程、纸浆漂白、污水处理、生物发酵、水产养殖、医疗和军事等诸多领域(杨,1991; Kumar, 1996; Jee, Park, Haam & Lee,2002)。

四十多年来变压吸附空分制氧技术的研究进展主要表现在两个方面:一是空分制氧吸附剂和其吸附理论的研究方面,二是空分制氧工艺循环过程的研究方面(Sircar,1994;Ruthven.Farooq&Knaebel, 1994)。国内对这项技术的研究尽管起步较早,然而在较长的一段时间内发展相对较缓。直至进入九十年代以来,变压吸附制氧设备的优越性才逐渐被国人认可,近几年各种流程的设备相继投产为各行各业带来了巨大的经济效益。2

变压吸附及变温吸附吸附分离方法任何一种吸附对于同一被吸附气体(吸附质)来说,在吸附平衡情况下,温度越低,压力越高,吸附量越大。反之,温度越高,压力越低,则吸附量越小。因此,气体的吸附分离方法,通常采用变温吸附或变压吸附两种循环过程。3

变温吸附原理如果压力不变,在常温或低温的情况下吸附,用高温解吸的方法,称为变温吸附(简称TSA)。显然,变温吸附是通过改变温度来进行吸附和解吸的。变温吸附操作是在低温(常温)吸附等温线和高温吸附等温线之间的垂线进行,由于吸附剂的比热容较大,热导率(导热系数)较小,升温和降温都需要较长的时间,操作上比较麻烦,因此变温吸附主要用于含吸附质较少的气体净化方面。133

变压吸附原理如果温度不变,在加压的情况下吸附,用减压(抽真空)或常压解吸的方法,称为变压吸附。可见,变压吸附是通过改变压力来吸附和解吸的。变压吸附操作由于吸附剂的热导率较小,吸附热和解吸热所引起的吸附剂床层温度变化不大,故可将其看成等温过程,它的工况近似地沿着常温吸附等温线进行,在较高压力(P2)下吸附,在较低压力(P1)下解吸。变压吸附既然沿着吸附等温线进行,从静态吸附平衡来看,吸附等温线的斜率对它的是影响很大的,在温度不变的情况下,压力和吸附量之间的关系,如图1所示,图中PH表示吸附压力,PL表示解吸(减压后)压力,这时PH与PL所应的吸附量的差,实质上是有效吸附量,以Ve表示之。显然,直线型吸附等温线的有效吸附量比曲线型(Langmuir型)的要来得大。

吸附常常是在压力环境下进行的,变压吸附提出了加压和减压相结合的方法,它通常是由加压吸附、减压再组成的吸附一解吸系统。在等温的情况下,利用加压吸附和减压解吸组合成吸附操作循环过程。吸附剂对吸附质的吸附量随着压力的升高而增加,并随着压力的降低而减少,同时在减压(降至常压或抽真空)过程中,放出被吸附的气体,使吸附剂再生,外界不需要供给热量便可进行吸附剂的再生。因此,变压吸附既称等温吸附,又称无热再生吸附。13

变压吸附过程吸附过程来自空气压缩机的压缩空气,首先进入冷干机脱除水分,然后进入由两台吸附塔组成的PSA制氮装置,利用塔中装填的专用碳分子筛吸附剂选择性地吸附掉O2、CO2等杂质气体组分,而作为产品气N2将以99%的纯度由塔顶排出。1

吸附剂再生在降压时,吸附剂吸附的氧气解吸出来,通过塔底逆放排出,经吹洗后,吸附剂得以再生。完成再生后的吸附剂经均压升压和产品升压后又可转入吸附。两塔交替使用,达到连续分离空气制氮的目的。1

变压吸附应用用碳分子筛制氮主要是基于氧和氮在碳分子筛中的扩散速率不同,在0.7-1.0Mpa压力下,即氧在碳分子筛表面的扩散速度大于氮的扩散速度,使碳分子筛优先吸附氧,而氮大部分富集于不吸附相中。碳分子筛本身具有加压时对氧的吸附容量增加,减压时对氧的吸附量减少的特性。利用这种特性采用变压吸附法进行氧、氮分离。从而得到99.99%的氮气。14